ADLB: The Asynchronous Dynamic
Load-Balancing Library

An approach to extreme scalability with an extremely
simple programming model (for some applications)

Rusty Lusk

Mathematics and Computer Science Division
Argonne National Laboratory

é,«,\ U.S. DEPARTMENT OF
¢ ENERGY



Outline

" |ntroduction
— Simple programming models
— Load balancing
— Scalability problems
= ADLB
— Whatitis
— How it works
— The API
= Example applications
— Fun —Sudoku solver
— Serious — GFMC: complex Monte Carlo physics application
— Useful — batcher: running independent jobs

e code walkthrough
= Getting and installing ADLB
=  Future directions

— for the APl —you can help
— for the implementation — my project




Two Classes of Parallel Programming Models

= Data Parallelism
— Parallelism arises from the fact that physics is largely local

— Same operations carried out on different data representing different patches
of space

— Communication usually necessary between patches (local)
e global (collective) communication sometimes also needed

— Load balancing sometimes needed

= Task Parallelism

— Work to be done consists of largely independent tasks, perhaps not all of the
same type

— Little or no communication between tasks
— Usually needs a separate “master” task for scheduling
— Load balancing essential



Load Balancing

= Definition: the assighnment (scheduling) of tasks (code + data) to processes
so as to minimize the total idle times of processes

= Static load balancing

all tasks are known in advance and pre-assigned to processes
works well if all tasks take the same amount of time
requires no coordination process

= Dynamic load balancing

tasks are assigned to processes by coordinating process when processes
become available

Requires communication between manager and worker processes
Tasks may create additional tasks
Tasks may be quite different from one another



Generic Master/Slave Algorithm

Shared
Master | Work queue
Slave Slave Slave Slave Slave

= Easily implemented in MPI

=  Solves some problems
— implements dynamic load balancing

— termination

— dynamic task creation

— can implement workflow structure of tasks

= Scalability problems

— Master can become a communication bottleneck (granularity dependent)

— Memory can become a bottleneck (depends on task description size)




The ADLB Vision

= No explicit master for load balancing; slaves make calls to ADLB library;
those subroutines access local and remote data structures (remote ones

via MPI).
=  Simple Put/Get interface from application code to distributed work queue
hides MPI calls
— Advantage: multiple applications may benefit
— Wrinkle: variable-size work units, in Fortran, introduce some complexity in
memory management
= Proactive load balancing in background
— Advantage: application never delayed by search for work from other slaves
— Wrinkle: scalable work-stealing algorithms not obvious



The ADLB Model (no master)

= Doesn’t really change algorithms in slaves
= Notanew idea (e.g. Linda)

= But need scalable, portable, distributed implementation of shared work queue
— MPI complexity hidden here



API for a Simple Programming Model

m  Basic calls

ADLB_Init( num_servers, am_server, app_comm)
ADLB_Server()

ADLB_Put( type, priority, len, buf, answer_dest )
ADLB_Reserve( req_types, handle, len, type, prio, answer_dest)
ADLB _lIreserve( ...)

ADLB_Get_Reserved( handle, buffer )

ADLB_Set_Done()

ADLB_Finalize()

= A few others, for tuning and debugging

ADLB_{Begin,End} Batch_Put()
Getting performance statistics with ADLB_Get_info(key)




APl Notes

= Return codes (defined constants)
— ADLB_SUCCESS
— ADLB_NO_MORE_WORK
— ADLB_DONE_BY_EXHAUSTION
— ADLB_NO_CURRENT_WORK (for ADLB_lIreserve)

= Batch puts are for inserting work units that share a large proportion of
their data

= Types, answer_rank, reserve_rank can be used to implement some
common patterns
— Sending a message
— Decomposing a task into subtasks
— Maybe should be built into API



How It Works

‘ Application Processes
() ADLB Servers

10



The ADLB Server Logic

= Main loop:
— MPI_lprobe for message in busy loop
— MPI_Recv message

— Process according to type
e Update status vector of work stored on remote servers
e Manage work queue and request queue
e (may involve posting MPI_Isends to isend queue)

— MPI_Test all requests in isend queue
— Return to top of loop
= The status vector replaces single master or shared memory

— Circulates every .1 second at high priority
— Multiple ways to achieve priority

11



A Tutorial Example: Sudoku

N W|o O

N =01 O©
o

12



Parallel Sudoku Solver with ADLB

112 9
3 6| 1
14 8
53
! 911 8|2
5|6
1 9
6|7 1
2 3) 3
Work unit =

partially completed “board”

Program:

if (rank = 0)

ADLB_Put initial board
ADLB_Get board (Reserve+Get)
while success (else done)

ooh
find first blank square
if failure (problem solved!)
print solution
ADLB_Set_Done
else
for each valid value
set blank square to value
ADLB_Put new board
ADLB_Get board
end while

13



How it Works

1:( 5 9 7
s of 61
7] |8
e Get
7] 1ol1] [8]2] [6] ==
5]6
A HE
7 1

1@ 9 7 11216 9 7 1@ 9 7
h 61 h 61 b 61
7] 18 AR E 7] 18
513 513 513
71 Tol1] [8l2] |6 71 Tol1] [8]2] e 71 Tol1] T8]2] s
5|6 516 5
11 19 11 19 11 19
6|7 1 6|7 1 6|7 1
2 5 3[8 2 5 38 2 5 3[8
Put

After initial Put, all processes execute same loop (no master)

3 6
8
3
91 2] |6
516
1
7 1
5 8

14




Optimizing Within the ADLB Framework

=  Can embed smarter strategies in this algorithm
— ooh = “optional optimization here”, to fill in more squares

— Even so, potentially a /ot of work units for ADLB to manage

= Can use priorities to address this problem
— On ADLB_Put, set priority to the number of filled squares

— This will guide depth-first search while ensuring that there is enough work to
go around

e How one would do it sequentially

= Exhaustion automatically detected by ADLB (e.g., proof that there is only
one solution, or the case of an invalid input board)

15



Green’s Function Monte Carlo - the defining application

= Green’s Function Monte Carlo -- the “gold standard” for ab initio
calculations in nuclear physics at Argonne (Steve Pieper, PHY)

= A non-trivial master/slave algorithm, with assorted work types and
priorities; multiple processes create work; large work units

= Has scaled to 2000 processors on BG/L a little over four years ago, then hit
scalability wall.

= Need to get to 10’s of thousands of processors at least, in order to carry
out calculations on *2C, an explicit goal of the UNEDF SciDAC project.

= The algorithm has had to become even more complex, with more types
and dependencies among work units, together with smaller work units

= Wanted to maintain master/slave structure of physics code
= This situation brought forth ADLB

= Achieving scalability has been a multi-step process
— balancing processing
— balancing memory
— balancing communication

a 16



Experiments with GFMC/ADLB on BG/P

= Using GFMC to compute the binding energy of 14 neutrons in an artificial
well ( “neutron drop” = teeny-weeny neutron star )

= A weak scaling experiment

BG/P ADLB _ Time Efficiency
Configs . :
cores Servers (min.) (incl. serv.)
4K 130 20 38.1 93.8%
8K 230 40 38.2 93.7%
16K 455 80 39.6 89.8%
32K 905 160 44.2 80.4%

Recent work: “micro-parallelization” needed for *?C, OpenMP in GFMC.

— asuccessful example of hybrid programming, with ADLB + MPI + OpenMP

17



Progress with GFMC

Efficiency = compute_time/wall_time — 25 Feb 2010

12c ADLB+GFMC

60

100
90 Oct 2009

i . e ]

i 80| Jun 2009 b
ff.? Feb 2009

128 512 2,048 8,192
Number of nodes (4 OpenMP cores per node)

=

\’Ng
.
N
o0

18



Another Physics Application - Parameter Sweep

B Luminescent solar concentrators
— Stationary, no moving parts

— Operate efficiently under diffuse light conditions
(northern climates)

B Inexpensive collector, concentrate light on high-performance
solar cell

(a) incident sunlight

37 @ KQ photovoltalc cell

luminescent material —,

light guide

‘d

=

19



The “Batcher”

= Simple but potentially useful

= |nputis a file of Unix command lines

= ADLB worker processes execute each one with the Unix “system” call
= Let’s look at the code...

20




ADLB Uses Multiple MPI Features

= ADLB_Init returns separate application communicator, so application can
use MPI for its own purposes if it needs to.

= Servers are in MPI_Iprobe loop for responsiveness.
= MPI_Datatypes for some complex, structured messages (status)

= Servers use nonblocking sends and receives, maintain queue of active
MPI|_Request objects.

= Queue is traversed and each request kicked with MPI_Test each time
through loop; could use MPI_Testany. No MPI_Wait.

=  (Client side uses MPI_Ssend to implement ADLB_Put in order to conserve
memory on servers, MPIl_Send for other actions.

= Servers respond to requests with MPI_Rsend since MPI_Irecvs are known to
be posted by clients before requests.

=  MPI provides portability: laptop, Linux cluster, SiCortex, BG/P
=  MPI profiling library is used to understand application/ADLB behavior.

21



Getting ADLB

=  Websiteis http://www.cs.mtsu.edu/~rbutler/adlb
= To download adlb:

— svn co http://svn.cs.mtsu.edu/svn/adlbm/trunk adlbm

=  What you get: 4
— source code 7
— configure script and Makefile >
— README, with APl documentation
— Examples R
e Sudoku %
e Batcher | P
— Batcher README |
e Traveling Salesman Problem
= To run your application
— configure, make to build ADLB library
— Compile your application with mpicc, use Makefile as example

— Run with mpiexec

=  Problems/complaints/kudos to {lusk,rbutler}@mcs.anl.gov

22




Future Directions

= APl design
— Some higher-level function calls might be useful
— User community will generate these

" |mplementations

— The one-sided version
e implemented
e single server to coordinate matching of requests to work units
e stores work units on client processes
e Uses MPI_Put/Get (passive target) to move work
e Hit scalability wall for GFMC at about 8000 processes
— The thread version
e uses separate thread on each client; no servers
e the original plan
¢ maybe for BG/Q, where there are more threads per node
e not re-implemented (yet)

23




Where We Are Now

= ADLB is a research project working its way toward being
useful general-purpose software.

= More users sought, especially those with more
straightforward applications than GFMC!

" [ts point is to explore whether extreme scalability in an
application can be achieved without extreme complexity in
application code.

24




Conclusions

= The Philosophical Accomplishment: Scalability need not come
at the expense of complexity

= The Practical Accomplishment: Maybe this can accelerate the
development of your application.

25




The End

26



