Understanding High-performance 1/0 on
BlueGene

Rob Latham
Mathematics and Computer Science Division
Argonne National Laboratory

robl@mcs.anl.gov

#T%, U.S. DEPARTMENT OF

i o

.9/ ENERGY
N

mailto:robl@mcs.anl.gov

Computational Science

Use of computer simulation as a tool for
greater understanding of the real world

— Complements experimentation and theory

Problems are increasingly computationally
challenging

— Large parallel machines needed to perform
calculations

— Critical to leverage parallelism in all phases
Data access is a huge challenge
— Using parallelism to obtain performance

— Finding usable, efficient, portable
interfaces

— Understanding and tuning /0

IBM Blue Gene/P system at Argonne National
Laboratory.

Visualization of entropy in Terascale Supernova
Initiative application. Image from Kwan-Liu Ma’s
visualization team at UC Dauvis.

Blue Gene/P Parallel Storage S stem
BG/P Tree Et.hemEt Infini Serial ATA

6.8 Gbit/sec |0 Gbit/sec |6 Ghltfsec 3.0 Gbit/sec

—_ | |

HW bottleneck is

| | n |
- - - here. Controllers
- - - can manage only
E E E 4.6 Gbyte/sec.
- - R Peak 1/O system
- - : bandwidth is
u [[78.2 Gbyte/sec.
I
Gateway nodes Commodity Storage nodes Enterprise storage
run parallel file system network primarily run parallel file system controllers and large racks
client software and carries storage traffic. software and manage of disks are connected via
forward 1/O operations incoming FS traffic InfiniBand or Fibre
from HPC clients. from gateway nodes. Channel.
640 Quad core PowerPC 900+ port 10 Gigabit |36 two dual core | 7 DataDirect S2ZA9700
450 nodes with 2 Gbytes Ethernet Myricom Opteron servers with controller pairs with 480
of RAM each switch complex 8 Gbytes of RAM each | Thyte drives and 8
InfiniBand ports per pair

Architectural diagram of the 557 TFlop IBM Blue Gene/P system at the Argonne Leadership Computing Facility.

Applications, Data Models, and 1/0

Applications have data models
appropriate to domain

— Multidimensional typed arrays, images composed of

scan lines, variable length records
— Headers, attributes on data

|/O systems have very simple data
models

— Tree-based hierarchy of containers
— Some containers have streams of bytes (files)

— Others hold collections of other containers
(directories or folders)

Someone has to map from one to the
other!

Graphic from J. Tannahill, LLNL

Log10 Density (g/cm®

14107 - —

1.ax10° |- —

1.0%10°

T soxtot T | — z

3

E,D)(IU4 — Q

sox1ot

zox10*

i
o s.ox10t 1.0x10% 1 5x10° 2 0%10%
time = 30012

r {em)
s
number of blocks = 9452

il Graphic from A. Siegel, ANL

1/O for Computational Science

High-Level 1/0 Library
maps application abstractions
onto storage abstractions

and provides data portability.

HDFS5, Parallel netCDF, ADIOS

1/0 Forwarding
bridges between app. tasks
and storage system and
provides aggregation for
uncoordinated I/O.

IBM ciod

ﬂ
—

Application

High-Level I/O Library

I/O Middleware

I/O Forwarding

Parallel File System

/O Hardware

%

1/0 Middleware
organizes accesses from
many processes,
especially those using
collective 1/O.

MPI-I0

Parallel File System
maintains logical space
and provides efficient
access to data.

PVFS, PanFS, GPFS, Lustre

Additional 1/O software provides improved performance and
usability over directly accessing the parallel file system. Reduces
or (ideally) eliminates need for optimization in application codes.

.
/0 Hardware and Software on Blue Gene/P

High-level 1/0 libraries 1/0 forwarding software Parallel file system Drive management
execute on compute nodes, runs on compute and code runs on gateway and software or firmware executes
mapping application abstractions gateway nodes, bridges storage nodes, maintains on storage controllers,

into flat files, and encoding data networks, and provides logical storage space and organizes individual drives,

in portable formats. aggregation of independent enables efficient access to detects drive failures, and

1/0 middleware manages 1.) data. reconstructs lost data.

collective access to storage. X

Compute nodes Gateway nodes Commodity network Storage nodes Enterprise storage
40,960 Quad core 640 Quad core 900+ port 10 Gigabit | 36 two dual core | 7 DataDirect 52A9900
PowerPC 450 nodes with ~ PowerPC 450 nodes with Ethernet Myricom Opteron servers with controller pairs with 480
2 Gbytes of RAM each 2 Gbytes of RAM each switch complex 8 Gbytes of RAM each | Tbyte drives and

8 InfiniBand ports per pair
Architectural diagram of the 557 TFlap IBM Blue Gene/P system at the Argonne Leadership Computing Facility.

o 6

ngh-level Libraries High-level 1/0 libraries and
and MPI'IO SOftware MPI-10 execute on compute nodes

and organize accesses before the /O

system sees them.

Compute nodes

run application codes with high-level |/O
libraries and MPI-1O. |/O libraries make
I/O calls to I/O forwarding system

170 Forwarding Software 1/0 forwarding software runs on

compute and gateway nodes and
bridges between the compute nodes
and external storage.

i
: AT AT~ I :
: T~ T~ T~ 1
AT~ T~ T~
I AT~ AT~ AT~ !
- AT I~ I~ -
I AT~ T~ T~)
I T ST ST :
| AT~ A~ T~ . M
I T~ P S I
AR 4R R By
' ~TT~ AT~ T~ ;
' T ST ST 1
I AT~ AT~ AT~
I ~TT™ ~TT™ ~TT™ :
|]
Compute nodes Gateway nodes
run I/O forwarding software run /O forwarding software
intercepting I/O calls from accepting /O requests from
application and forwarding to compute nodes and forward
gateway nodes to parallel file system

Parallel F] le SyStem PVFS code runs on gateway and
SOftware storage nodes, maintains logical

storage space, and enables efficient
access to data.

L]
|
~T T AT AT : [
AT~ A~ AT~ 1
AT T~ “TI~ L
T AT~ AT~ ><_
T T ™ 1™ | 1
ra " T AT~ |
~ T T~ ~TI~ : -
AT T~ ~Tr~ ! m
AT AT~ T~ ['
T~ AT AT | ><_
™ ™ AT |
T s i i |.]
A T ™ ™ I 1
AT ~TI~ T~ : .
T T T~ T~ | .
L |
= |
| |
Gateway nodes Commodity network Storage nodes Enterprise storage
run parallel file primarily carries run parallel file accept block device
system client storage traffic system server requests from file
software software and server and manage
manage incoming logical units (LUNs)
FS traffic

The MPI-IO Interface

MPI-10

|/O interface specification for use in MPI apps
Data model is same as POSIX

Stream of bytes in a file

Features:

Collective 1/0

Noncontiguous I/O with MPI datatypes and file views
Nonblocking 1/0
Fortran bindings (and additional languages)

System for encoding files in a portable format (external32)
* Not self-describing - just a well-defined encoding of types

Implementations available on most platforms (more later)

11

Independent and Collective 1/0

o pfefeaffeeffes]| [roleaffez]fen]paes]
B S NS S S

Independent I/O Collective I/O

= Independent I/O operations specify only what a single process will do

— Independent I/0O calls do not pass on relationships between I/O on other processes
= Many applications have phases of computation and I/0

— During I/0 phases, all processes read/write data

— We can say they are collectively accessing storage
= Collective I/0 is coordinated access to storage by a group of processes

— Collective 1/0 functions are called by all processes participating in I/0

— Allows I/0O layers to know more about access as a whole, more opportunities for optimization
in lower software layers, better performance

12

Contiguous and Noncontiguous 1/0

Vars 0,1, 2,3, ... 23

B Ghost cell

B Stored element

Noncontiguous Noncontiguous Extracting variables from a block and
in File in Memory skipping ghost cells will result in
noncontiguous I/0.

= Contiguous I/O moves data from a single memory block into a single file region
= Noncontiguous I/O has three forms:

— Noncontiguous in memory, noncontiguous in file, or noncontiguous in both
= Structured data leads naturally to noncontiguous I/O (e.g. block decomposition)

= Describing noncontiguous accesses with a single operation passes more knowledge to I/O
system

A 13

Collective I/0 and Two-Phase I/0

mirix imimin) e

Initial State Phase 1:1/0 Phase 2: Redistribution

Two-Phase Read Algorithm

= Problems with independent, noncontiguous access
— Lots of small accesses
— Independent data sieving reads lots of extra data, can exhibit false sharing
= |dea: Reorganize access to match layout on disks
— Single processes use data sieving to get data for many
— Often reduces total I/0 through sharing of common blocks
= Second “phase” redistributes data to final destinations
= Two-phase writes operate in reverse (redistribute then 1/0)
— Typically read/modify/write (like data sieving)
— Overhead is lower than independent access because there is little or no false sharing

= Note that two-phase is usually applied to file regions, not to actual blocks

14

Two-Phase I/0 Algorithms

Imagine a collective I/O access Offsec in File -
using four aggregators to a file CTTT T O 7 7 | NN [[[DO [7 [
striped over four file servers A $ |
(indicated by colors): Stripe Unit Lock Extent of Accesses

Boundary
One approach is to evenly ‘AggregatorlfAggregatorZ?Aggregator3?Aggregator4
divide the region accessed '
across aggregators. T T T - T

Aligning regions with lock —> —>
boundaries eliminates lock
contention.

Mapping aggregators to servers
reduces the number of
concurrent operations on a
single server and can be helpful LAl A2 A3 T A4 T AL T A A3
when locks are handed out on ' \ ' ' '

a per-server basis (e.g., Lustre).

For more information, see W.K. Liao and A. Choudhary,“Dynamically Adapting File Domain Partitioning Methods for Collective /O Based on
Underlying Parallel File System Locking Protocols,” SC2008, November, 2008.

é 15

Impact of Two-Phase 1/0 Algorithms

53D 'O on GPFS

This graph shows the 0.8
aligned —<— P

performance for the S3D _ 07| group —o— Y
combustion code, writing to a ﬁ 0.8 /w/ff
single file. % os | . |
Aligning with lock boundaries 2 o4 f@/ M__,H———--
doubles performance over E sl o
default “even” algorithm. =
)) | 8 o u.zzv/&——’é’_” @x._ﬂ

Group” algorithm similar to o1 L

e & G % %

server-aligned algorithm on last Number of Procese. s
slide.
W.K. Liao and A. Choudhary,“Dynamically Adapting
Testing on Mercu ry, an IBM File Domain Partitioning Methods for Collective
. I/O Based on Underlying Parallel File System
|A64 system at NCSA, with 54 Locking Protocols,” SC2008, November, 2008.

servers and 512KB stripe size.

16

The Parallel netCDF
Interface and File Format

Thanks to Wei-Keng Liao, Alok
Choudhary, and Kui Gao (NWU) for their
help in the development of PnetCDF.

Parallel netCDF (PnetCDF)

B Based on original “Network Common Data Format” (netCDF) work from Unidata

— Derived from their source code

B Data Model:

— Collection of variables in single file
— Typed, multidimensional array variables
— Attributes on file and variables

B Features:
— Cand Fortran interfaces
— Portable data format (identical to netCDF)
— Noncontiguous I/O in memory using MPI datatypes
— Noncontiguous I/0 in file using sub-arrays
— Collective I/O
— Non-blocking I/0

B Unrelated to netCDF-4 work

18

Data Layout in netCDF Files

Application Data Structures

26

—

..........

- -

T

\

314 U1 PO

netCDF File "checkpoint07.nc"

Variable "temp" {
type = NC_DOUBLE,
dims = {1024, 1024, 26},
start offset = 65536,
attributes = {"Units" = "K"}}

Variable "surface_pressure” {
type = NC_FLOAT,
dims = {512, 512},
start offset = 218103808,
attributes = {"Units" = "Pa"}}

< Data for "temp" >

< Data for "surface_pressure" >

%

netCDF header describes
the contents of the file:
typed, multi-dimensional
variables and attributes

on variables or the dataset
itself.

Data for variables is stored
in contiguous blocks,
encoded in a portable binary
format according to the
variable's type.

19

Record Variables in netCDF

Record variables are defined to have a single
“unlimited” dimension
— Convenient when a dimension size is unknown at time
of variable creation
Record variables are stored after all the other
variables in an interleaved format
— Using more than one in a file is likely to result in poor
performance due to number of noncontiguous
accesses

Fixed-sized data

Record Data

netCDF Header

"

l1st non—record variable

Z2nd non-record variable

e

[

2R

LR

nth non—record wariable

1zt Record for 1st Eecord ¥Yar

1=t Record for ?nd Record Var

e

1zt Record for rth Eecord ¥ar

Z2nd Record for lst,
Znd,...,rth Record

Variables 1n order

"

T

r"'L
-

%1

Eecords grow in the TNLINITED
dimenszion for 1,2,...,rth war

20

S |

Storing Data in PnetCDF

= Create a dataset (file)
— Puts dataset in define mode
— Allows us to describe the contents
e Define dimensions for variables
e Define variables using dimensions

e Store attributes if desired (for variable or
dataset)

= Switch from define mode to data mode to write
variables

= Store variable data
= Close the dataset

21

Other High-Level I/0 libraries

= NetCDF-4: http://www.unidata.ucar.edu/software/netcdf/netcdf-4/
— netCDF APl with HDF5 back-end
= ADIOS: http://adiosapi.org
— Configurable (xml) I/O approaches
= SILO: https://wci.lInl.gov/codes/silo/
— A mesh and field library on top of HDF5 (and others)
= H5part: http://vis.Ibl.gov/Research/AcceleratorSAPP/
— simplified HDF5 API for particle simulations

= GIO: https://svn.pnl.gov/gcrm

— Targeting geodesic grids as part of GCRM

= P|O:

— climate-oriented 1/0 library; supports raw binary, parallel-netcdf, or serial-netcdf (from
master)

= ... Many more: my point: it's ok to make your own.

http://www.unidata.ucar.edu/software/netcdf/netcdf-4/
http://www.unidata.ucar.edu/software/netcdf/netcdf-4/
http://www.unidata.ucar.edu/software/netcdf/netcdf-4/
http://www.unidata.ucar.edu/software/netcdf/netcdf-4/
http://adiosapi.org/
http://adiosapi.org/
https://wci.llnl.gov/codes/silo/
https://wci.llnl.gov/codes/silo/
https://svn.pnl.gov/gcrm
https://svn.pnl.gov/gcrm

HDF5

Hierarchical Data Format, from the HDF Group (formerly of NCSA)

Data Model:

Hierarchical data organization in single file

Typed, multidimensional array storage

Attributes on dataset, data

Features:

C, C++, and Fortran interfaces

Portable data format

Optional compression (not in parallel /0 mode)

Data reordering (chunking)

Noncontiguous I/O (memory and file) with hyperslabs

23

HDF5 Files

HDF5 File “chkpt007.h5”

Dataset “temp” Group “viz”
datatype = HST_NATIVE_DOUBLE
dataspace = (10, 20)

20
—

|

attributes = ..

= HDFS5 files consist of groups, datasets, and attributes
- are like directories, holding other groups and datasets

— hold an array of typed data
e A describes the type (not an MPI datatype)
e A gives the dimensions of the array

- are small datasets associated with the file, a group, or another
dataset

e Also have a datatype and dataspace
e May only be accessed as a unit

24

Enabling High-performance 1/0 with HDF5

/* Set up file access property list w/ parallel I/0 access */
plist_id = H5Pcreate(H5P_FILE_ACCESS);
H5Pset_fapl_mpio(plist_id, comm, 1info);

/* Create a new file collectively. */
file_id = H5Fcreate(filename, HS5F_ACC_TRUNC,
H5P_DEFAULT, plist_id);
H5Pclose(plist_id);
/* .. omited data decomposition for brevity */
/* Set up data transfer property list w/ collective MPI-IO */
plist_1d = H5Pcreate(H5P_DATASET_XFER);
H5Pset_dxpl_mpio(plist_id, H5FD_MPIO_COLLECTIVE);

status = HS5Dwrite(dset_1d, HS5T_NATIVE_INT,
memspace, filespace, plist_id, data);

Go to "Insert (View) | Header and Footer" to add your organization, sponsor, meeting name here; then, click "Apply to All"

A 25

Inside HDF5

B MPI_F1le_open used to open file

B Because there is no “define” mode, file layout is determined at
write time

B In H5Dwr1te:

— Processes communicate to determine file layout
* Process O performs met:_:\data updates after write
— CallMPI_File_set_view

— CallMPI_File_write_all to collectively write
* Only if enabled via property list

B Memory hyperslab could have been used to define
noncontiguous region in memory

B |n FLASH application, data is kept in native format and
converted at read time (defers overhead)

— Could store in some other format if desired
B At the MPI-10 layer:

— Metadata updates at every write are a bit of a bottleneck
* MPI-IO from process 0 introduces some skew

26

HDF5 Wrap-up

= Tremendous flexibility: 300+ routines
= Hb5Lite high level routines for common cases
= Tuning via property lists
— “use MPI-10 to access this file”
— “read this data collectively”
= Extensive on-line documentation, tutorials (see “On Line Resources” slide)
= New efforts:
— Journaling: make datasets more robust in face of crashes (Sandia)
— Fast appends (finance motivated)

— Single-writer, Multiple-reader semantics
— Aligning data structures to underlying file system

27

Lightweight Application Characterization
with Darshan

Thanks to Phil Carns (carns@mcs.anl.gov) for
providing background material on Darshan.

‘:g-"q"::‘\ U.S. DEPARTMENT OF
. {@) ENERGY

mailto:carns@mcs.anl.gov

Characterizing Application I/0

How are are applications using the 1/0 system, and how successful are they at
attaining high performance?

Darshan (Sanskrit for “sight”) is a tool we developed for I/O characterization
at extreme scale:

= No code changes, small and tunable memory footprint (~2MB default)
= Characterization data aggregated and compressed prior to writing
= (Captures:
— Counters for POSIX and MPI-10 operations
— Counters for unaligned, sequential, consecutive, and strided access
— Timing of opens, closes, first and last reads and writes
— Cumulative data read and written
— Histograms of access, stride, datatype, and extent sizes

http://www.mcs.anl.gov/darshan/
P. Carns et al, “24/7 Characterization of Petascale |/O Workloads,” IASDS Workshop, held in
conjunction with IEEE Cluster 2009, September 2009.

29

Darshan Internals

Characterization centers around per-file
records

— Multiple hash tables allow relating accesses
to one another

— Falls back to aggregate (across files) mode if
file limit is exceeded

At output time, processes further reduce
output size

— Communicate to combine data on identical
files accessed by all processes

— Independently compress (gzip) remaining
data

e 32K processes writing a shared file
leads to 203 bytes of compressed
output

e 32K processes writing a total of 262,144
files leads to 13.3MB of output

MRU File

File Name File Descriptor MPI File Handle
Hash Table Hash Table Hash Table

/

Counters

—— 2] ofof s 1] ofenn

= =

Access Size i Stride Sizei
: Frequency @ I Frequency i

Multiple tables allow efficient
location of file records by name,
file descriptor, or MPI File
handle.

30

The Darshan Approach

= Use PMPI and Id wrappers to intercept I/O functions
— Requires re-linking, but no code modification
— Can be transparently included in mpicc
— Compatible with a variety of compilers

= Record statistics independently at each process
— Compact summary rather than verbatim record
— Independent data for each file

= Collect, compress, and store results at shutdown time

— Aggregate shared file data using custom MPI reduction operator
— Compress remaining data in parallel with zlib
— Write results with collective MPI-IO

— Result is a single gzip-compatible file containing characterization
information

31

Example Statistics (per file)

= Counters:
— POSIX open, read, write, seek, stat, etc.
— MPI-I0 nonblocking, collective, independent, etc.
— Unaligned, sequential, consecutive, strided access

— MPI-I0O datatypes and hints I

= Histograms: _
. . consecutive
— access, stride, datatype, and extent sizes

= Timestamps:
— open, close, first 1/0, last I/O

= Cumulative bytes read and written strided

= Cumulative time spent in I/0 and metadata operations

" Most frequent access sizes and strides

= Darshan records 150 integer or floating point parameters per file,
plus job level information such as command line, execution time,
and number of processes.

H HE

sequential

32

Job Summary

B Job summary tool shows
characteristics “at a glance”

MADBench2 example

B Shows time spent in read, write,

and metadata

B Operation counts, access size
histogram, and access pattern

B Early indication of I/O behavior
and where to explore in further

MADbench2 (8/31,/2009)

[uid: 4279 | nprocs: 484 runtime: 255 seconds
Average I/O cost per process
100 8000
7000
o 8O}
£ 26000
5 o
Z 80 & 5000
] o
g’ 40 E_mnn
]
g G 3000
ool =
=3
S 2000
0 1000
VO Sizes
4000 4000
3500 | 3500
gsooo F 3000
2 2500 - é
= £ 2500
= 2000 [=
o 2000
Kl
=500 |- 5
E = 1500
3 1000 §
1000
500 |
o 500
/////////
o O T, B TG T Y Gy, Tt TG
AR T, W gy, 7 o

% Ed B, o

Read mmmm \\rite mmm

Top 4 Access Sizes

| access size

count

19568768
0
0
0

7744
0
0
0

/home/carns/tar/MADBench2/MADbench2 34408 4 1 1564 4194304 1 1

Tota| mmmm Conseculive -

Chombo I/0 Benchmark

180 | | -

160 | -

B Checkpoint writes from AMR 140 | -
framework 120 L -
B Uses HDF5 for I/O 8 100 | .
B Code base is complex § 80 | i
B 512 processes ? sl)
B 18.24 GB output file a0 |]
20 + -

0
“s K 3 “,, 100%
® % Ozé, 4,

Chombo cumulative time per process
= Why does the |/O take so long in this case?
= Why isn’t it busy writing data the whole time?

@ 34

Chombo I/0 Benchmark

Many write operations, 100 ¢ ' |

with none over 1 MB in @ %
size el Tl °
Most common access size 4 |

is 28,800 (occurs 15622 3

times) ° 40

No MPI datatypes or o |

collectives I

All processes frequently 0

seek forward between 00 %,
writes (A

Chombo write size histogram, 512 procs

B Consecutive: 49.25%
B Sequential: 99.98%
B Unaligned in file: 99.99%

B Several recurring regular stride patterns .

After additional testing and
hardening, Darshan installed on
Intrepid

By default, all applications compiling
with MPI compilers are instrumented

Data captured from late January
through late March of 2010

Darshan captured data on 6,480 jobs
(27%) from 39 projects (59%)

Simultaneously captured data on
servers related to storage utilization

Two Months of Application I/0 on ALCF Blue Gene/P

10000 ¢
Wrile ——
Riesn —

LU R o

100

Humber of T8

10

'ﬁ:b a2
%:%%%% ﬁ;a%*:%’%
m

Top 10 data producers and/or
consumers shown. Surprisingly, most
“big I/O” users read more data during
simulations than they wrote.

P. Carns et al, “Storage Access Characteristics of Computational Science Applications,” forthcoming.

Application I/0 on ALCF Blue Gene/P

Application Mbytes/s | Cum. MD | Files/Pr | Creates/ | Seq. | Mbytes/Pr
ec/CN* oc Proc 1/0 oc

EarthScience 0.69 95% 140.67 08.87 65% 1779.48
NuclearPhysics 1.53 55% 1.72 0.63 100% 234.57
Energyl 0.77 31% 0.26 0.16 87% 66.35
Climate 0.31 82% 3.17 2.44 97% 1034.92
Energy2 0.44 3% 0.02 0.01 86% 24.49
Turbulencel 0.54 64% 0.26 0.13 77% 117.92
CombustionPhysics 1.34 67% 6.74 2.73 100% 657.37
Chemistry 0.86 21% 0.20 0.18 42% 321.36
Turbulence2 1.16 81% 0.53 0.03 67% 37.36
Turbulence3 0.58 1% 0.03 0.01 100% 40.40

* Synthetic I/O benchmarks (e.g., IOR) attain 3.93 - 5.75 Mbytes/sec/CN for modest job sizes,
down to approximately 1.59 Mbytes/sec/CN for full-scale runs.

P. Carns et al, “Storage Access Characteristics of Computational Science Applications,” forthcoming.

37

Darshan Summary

= Scalable tools like Darshan can yield useful insight
— Identify characteristics that make applications successful
— ldentify problems to address through 1/O research

= Petascale performance tools require special considerations
— Target the problem domain carefully to minimize amount of data
— Avoid shared resources
— Use collectives where possible

" For more information:

http://www.mcs.anl.gov/research/projects/darshan

38

S3D Turbulent Combustion Code

= S3Dis a turbulent combustion
application using a direct numerical
simulation solver from Sandia
National Laboratory

4D subarray in

= Checkpoints consist of four global pracess B, N
arrays
— 2 3-dimensional S mapping
— 2 4-dimensional RN)
— 50x50x50 fixed _ — n=m-1
subarrays .2z e Lo
f’ .

Thanks to Jackie Chen (SNL), Ray Grout (SNL),
and Wei-Keng Liao (NWU) for providing the S3D
I/O benchmark, Wei-Keng Liao for providing this
diagram, C.Wang, H.Yu, and K.-L. Ma of UC
Davis for image.

m: length of the 4th dimension

n=0 n: index of the 4th dimension

é 39

Impact of Optimizations on S3D 1/0

= Testing with PnetCDF output to single file, three configurations,
16 processes

— All MPI-IO optimizations (collective buffering and data sieving) disabled
— Independent I/O optimization (data sieving) enabled

— Collective I/0 optimization (collective buffering, a.k.a. two-phase 1/0) enabled

Coll. Buffering and | Data Sieving Coll. Buffering
Data Sieving Enabled Enabled (incl.
Disabled Aggregation)

POSIX writes 102,401 81 5

POSIX reads 0 80 0

MPI-10 writes 64 64 64

Unaligned in file 102,399 80 4

Total written (MB) 6.25 87.11 6.25

Runtime (sec) 1443 11 6.0

Avg. MPI-IO time 1426.47 4.82 0.60

per proc (sec)

40

Wrapping Up

= We've covered a lot of ground in a short time
— Very low-level, serial interfaces
— High-level, hierarchical file formats

= Storage is a complex hardware/software system

= There is no magic in high performance 1/0

— Lots of software is available to support computational science workloads
at scale

— Knowing how things work will lead you to better performance

= Using this software (correctly) can dramatically improve
performance (execution time) and productivity (development time)

41

On-Line References

netCDF and netCDF-4
— http://www.unidata.ucar.edu/packages/netcdf/

PnetCDF

— http://www.mcs.anl.gov/parallel-netcdf/

ROMIO MPI-IO

— http://www.mcs.anl.gov/romio/

HDF5 and HDF5 Tutorial

— http://www.hdfgroup.org/

— http://www.hdfgroup.org/HDF5/

— http://www.hdfgroup.org/HDF5/Tutor

Darshan |/O Characterization Tool
— http://www.mcs.anl.gov/research/projects/darshan

Assorted ALCF-Specific suggestions:
— https://wiki.alcf.anl.gov/index.php/l_O_Tuning

42

http://www.mcs.anl.gov/research/projects/darshan
http://www.mcs.anl.gov/research/projects/darshan

