
Understanding High-performance I/O on

BlueGene

Rob Latham

Mathematics and Computer Science Division

Argonne National Laboratory

robl@mcs.anl.gov

mailto:robl@mcs.anl.gov

Computational Science

 Use of computer simulation as a tool for
greater understanding of the real world

– Complements experimentation and theory

 Problems are increasingly computationally
challenging

– Large parallel machines needed to perform
calculations

– Critical to leverage parallelism in all phases

 Data access is a huge challenge

– Using parallelism to obtain performance

– Finding usable, efficient, portable
interfaces

– Understanding and tuning I/O

2

Visualization of entropy in Terascale Supernova
Initiative application. Image from Kwan-Liu Ma’s
visualization team at UC Davis.

IBM Blue Gene/P system at Argonne National
Laboratory.

Blue Gene/P Parallel Storage System

3

Applications, Data Models, and I/O

 Applications have data models
appropriate to domain

– Multidimensional typed arrays, images composed of
scan lines, variable length records

– Headers, attributes on data

 I/O systems have very simple data
models

– Tree-based hierarchy of containers

– Some containers have streams of bytes (files)

– Others hold collections of other containers
(directories or folders)

 Someone has to map from one to the
other!

4

Graphic from J. Tannahill, LLNL

Graphic from A. Siegel, ANL

I/O for Computational Science

 Additional I/O software provides improved performance and

usability over directly accessing the parallel file system. Reduces

or (ideally) eliminates need for optimization in application codes.

5

I/O Hardware and Software on Blue Gene/P

6

High-level Libraries

and MPI-IO Software

7

I/O Forwarding Software

8

Parallel File System

Software

9

The MPI-IO Interface

10

MPI-IO

 I/O interface specification for use in MPI apps

 Data model is same as POSIX

– Stream of bytes in a file

 Features:

– Collective I/O

– Noncontiguous I/O with MPI datatypes and file views

– Nonblocking I/O

– Fortran bindings (and additional languages)

– System for encoding files in a portable format (external32)

• Not self-describing - just a well-defined encoding of types

 Implementations available on most platforms (more later)

11

Independent and Collective I/O

 Independent I/O operations specify only what a single process will do

– Independent I/O calls do not pass on relationships between I/O on other processes

 Many applications have phases of computation and I/O

– During I/O phases, all processes read/write data

– We can say they are collectively accessing storage

 Collective I/O is coordinated access to storage by a group of processes

– Collective I/O functions are called by all processes participating in I/O

– Allows I/O layers to know more about access as a whole, more opportunities for optimization
in lower software layers, better performance

12

P0 P1 P2 P3 P4 P5 P0 P1 P2 P3 P4 P5

Independent I/O Collective I/O

Contiguous and Noncontiguous I/O

 Contiguous I/O moves data from a single memory block into a single file region
 Noncontiguous I/O has three forms:

– Noncontiguous in memory, noncontiguous in file, or noncontiguous in both
 Structured data leads naturally to noncontiguous I/O (e.g. block decomposition)
 Describing noncontiguous accesses with a single operation passes more knowledge to I/O

system

13

Process 0 Process 0

Noncontiguous
in File

Noncontiguous
in Memory

Ghost cell

Stored element

…
Vars 0, 1, 2, 3, … 23

Extracting variables from a block and
skipping ghost cells will result in
noncontiguous I/O.

Collective I/O and Two-Phase I/O

 Problems with independent, noncontiguous access

– Lots of small accesses

– Independent data sieving reads lots of extra data, can exhibit false sharing

 Idea: Reorganize access to match layout on disks

– Single processes use data sieving to get data for many

– Often reduces total I/O through sharing of common blocks

 Second “phase” redistributes data to final destinations

 Two-phase writes operate in reverse (redistribute then I/O)

– Typically read/modify/write (like data sieving)

– Overhead is lower than independent access because there is little or no false sharing

 Note that two-phase is usually applied to file regions, not to actual blocks

14

Two-Phase Read Algorithm

p0 p1 p2 p0 p1 p2 p0 p1 p2

Phase 1: I/O Initial State Phase 2: Redistribution

Two-Phase I/O Algorithms

15

For more information, see W.K. Liao and A. Choudhary, “Dynamically Adapting File Domain Partitioning Methods for Collective I/O Based on

Underlying Parallel File System Locking Protocols,” SC2008, November, 2008.

Impact of Two-Phase I/O Algorithms

 This graph shows the
performance for the S3D
combustion code, writing to a
single file.

 Aligning with lock boundaries
doubles performance over
default “even” algorithm.

 “Group” algorithm similar to
server-aligned algorithm on last
slide.

 Testing on Mercury, an IBM
IA64 system at NCSA, with 54
servers and 512KB stripe size.

16

W.K. Liao and A. Choudhary, “Dynamically Adapting

File Domain Partitioning Methods for Collective

I/O Based on Underlying Parallel File System

Locking Protocols,” SC2008, November, 2008.

The Parallel netCDF

Interface and File Format

17

Thanks to Wei-Keng Liao, Alok
Choudhary, and Kui Gao (NWU) for their
help in the development of PnetCDF.

Parallel netCDF (PnetCDF)

 Based on original “Network Common Data Format” (netCDF) work from Unidata

– Derived from their source code

 Data Model:

– Collection of variables in single file

– Typed, multidimensional array variables

– Attributes on file and variables

 Features:

– C and Fortran interfaces

– Portable data format (identical to netCDF)

– Noncontiguous I/O in memory using MPI datatypes

– Noncontiguous I/O in file using sub-arrays

– Collective I/O

– Non-blocking I/O

 Unrelated to netCDF-4 work

18

Data Layout in netCDF Files

19

Record Variables in netCDF

 Record variables are defined to have a single
“unlimited” dimension

– Convenient when a dimension size is unknown at time
of variable creation

 Record variables are stored after all the other
variables in an interleaved format

– Using more than one in a file is likely to result in poor
performance due to number of noncontiguous
accesses

20

Storing Data in PnetCDF

 Create a dataset (file)
– Puts dataset in define mode
– Allows us to describe the contents

• Define dimensions for variables
• Define variables using dimensions
• Store attributes if desired (for variable or

dataset)
 Switch from define mode to data mode to write

variables
 Store variable data
 Close the dataset

21

Other High-Level I/O libraries

 NetCDF-4: http://www.unidata.ucar.edu/software/netcdf/netcdf-4/

– netCDF API with HDF5 back-end

 ADIOS: http://adiosapi.org

– Configurable (xml) I/O approaches

 SILO: https://wci.llnl.gov/codes/silo/

– A mesh and field library on top of HDF5 (and others)

 H5part: http://vis.lbl.gov/Research/AcceleratorSAPP/

– simplified HDF5 API for particle simulations

 GIO: https://svn.pnl.gov/gcrm

– Targeting geodesic grids as part of GCRM

 PIO:

– climate-oriented I/O library; supports raw binary, parallel-netcdf, or serial-netcdf (from
master)

 … Many more: my point: it's ok to make your own.

http://www.unidata.ucar.edu/software/netcdf/netcdf-4/
http://www.unidata.ucar.edu/software/netcdf/netcdf-4/
http://www.unidata.ucar.edu/software/netcdf/netcdf-4/
http://www.unidata.ucar.edu/software/netcdf/netcdf-4/
http://adiosapi.org/
http://adiosapi.org/
https://wci.llnl.gov/codes/silo/
https://wci.llnl.gov/codes/silo/
https://svn.pnl.gov/gcrm
https://svn.pnl.gov/gcrm

HDF5

 Hierarchical Data Format, from the HDF Group (formerly of NCSA)

 Data Model:

– Hierarchical data organization in single file

– Typed, multidimensional array storage

– Attributes on dataset, data

 Features:

– C, C++, and Fortran interfaces

– Portable data format

– Optional compression (not in parallel I/O mode)

– Data reordering (chunking)

– Noncontiguous I/O (memory and file) with hyperslabs

23

HDF5 Files

 HDF5 files consist of groups, datasets, and attributes
– Groups are like directories, holding other groups and datasets

– Datasets hold an array of typed data
• A datatype describes the type (not an MPI datatype)

• A dataspace gives the dimensions of the array

– Attributes are small datasets associated with the file, a group, or another
dataset

• Also have a datatype and dataspace

• May only be accessed as a unit

24

Dataset “temp”

HDF5 File “chkpt007.h5”

Group “/”

Group “viz”
datatype = H5T_NATIVE_DOUBLE
dataspace = (10, 20)

attributes = …

10 (data)

20

Enabling High-performance I/O with HDF5

/* Set up file access property list w/ parallel I/O access */

plist_id = H5Pcreate(H5P_FILE_ACCESS);

H5Pset_fapl_mpio(plist_id, comm, info);

/* Create a new file collectively. */

file_id = H5Fcreate(filename, H5F_ACC_TRUNC,

 H5P_DEFAULT, plist_id);

H5Pclose(plist_id);

/* … omited data decomposition for brevity */

/* Set up data transfer property list w/ collective MPI-IO */

plist_id = H5Pcreate(H5P_DATASET_XFER);

H5Pset_dxpl_mpio(plist_id, H5FD_MPIO_COLLECTIVE);

status = H5Dwrite(dset_id, H5T_NATIVE_INT,

 memspace, filespace, plist_id, data);

Go to ”Insert (View) | Header and Footer" to add your organization, sponsor, meeting name here; then, click "Apply to All"

25

Inside HDF5

 MPI_File_open used to open file
 Because there is no “define” mode, file layout is determined at

write time
 In H5Dwrite:

– Processes communicate to determine file layout
• Process 0 performs metadata updates after write

– Call MPI_File_set_view
– Call MPI_File_write_all to collectively write

• Only if enabled via property list

 Memory hyperslab could have been used to define
noncontiguous region in memory

 In FLASH application, data is kept in native format and
converted at read time (defers overhead)
– Could store in some other format if desired

 At the MPI-IO layer:
– Metadata updates at every write are a bit of a bottleneck

• MPI-IO from process 0 introduces some skew

26

HDF5 Wrap-up

 Tremendous flexibility: 300+ routines

 H5Lite high level routines for common cases

 Tuning via property lists

– “use MPI-IO to access this file”

– “read this data collectively”

 Extensive on-line documentation, tutorials (see “On Line Resources” slide)

 New efforts:

– Journaling: make datasets more robust in face of crashes (Sandia)

– Fast appends (finance motivated)

– Single-writer, Multiple-reader semantics

– Aligning data structures to underlying file system

27

Lightweight Application Characterization

with Darshan

Thanks to Phil Carns (carns@mcs.anl.gov) for
providing background material on Darshan.

28

mailto:carns@mcs.anl.gov

Characterizing Application I/O

How are are applications using the I/O system, and how successful are they at
attaining high performance?

Darshan (Sanskrit for “sight”) is a tool we developed for I/O characterization
at extreme scale:

 No code changes, small and tunable memory footprint (~2MB default)

 Characterization data aggregated and compressed prior to writing

 Captures:

– Counters for POSIX and MPI-IO operations

– Counters for unaligned, sequential, consecutive, and strided access

– Timing of opens, closes, first and last reads and writes

– Cumulative data read and written

– Histograms of access, stride, datatype, and extent sizes

29

http://www.mcs.anl.gov/darshan/
P. Carns et al, “24/7 Characterization of Petascale I/O Workloads,” IASDS Workshop, held in
conjunction with IEEE Cluster 2009, September 2009.

Darshan Internals

 Characterization centers around per-file
records

– Multiple hash tables allow relating accesses
to one another

– Falls back to aggregate (across files) mode if
file limit is exceeded

 At output time, processes further reduce
output size

– Communicate to combine data on identical
files accessed by all processes

– Independently compress (gzip) remaining
data

• 32K processes writing a shared file
leads to 203 bytes of compressed
output

• 32K processes writing a total of 262,144
files leads to 13.3MB of output

30

Multiple tables allow efficient

location of file records by name,

file descriptor, or MPI File

handle.

The Darshan Approach

 Use PMPI and ld wrappers to intercept I/O functions
– Requires re-linking, but no code modification

– Can be transparently included in mpicc

– Compatible with a variety of compilers

 Record statistics independently at each process
– Compact summary rather than verbatim record

– Independent data for each file

 Collect, compress, and store results at shutdown time
– Aggregate shared file data using custom MPI reduction operator

– Compress remaining data in parallel with zlib

– Write results with collective MPI-IO

– Result is a single gzip-compatible file containing characterization
information

31

Example Statistics (per file)

 Counters:
– POSIX open, read, write, seek, stat, etc.

– MPI-IO nonblocking, collective, independent, etc.

– Unaligned, sequential, consecutive, strided access

– MPI-IO datatypes and hints

 Histograms:
– access, stride, datatype, and extent sizes

 Timestamps:
– open, close, first I/O, last I/O

 Cumulative bytes read and written

 Cumulative time spent in I/O and metadata operations

 Most frequent access sizes and strides

 Darshan records 150 integer or floating point parameters per file,
plus job level information such as command line, execution time,
and number of processes.

 32

sequential

consecutive

strided

1 2 3

1 2 3

1 2 3

Job Summary

33

 Job summary tool shows

characteristics “at a glance”

 MADBench2 example

 Shows time spent in read, write,

and metadata

 Operation counts, access size

histogram, and access pattern

 Early indication of I/O behavior

and where to explore in further

Chombo I/O Benchmark

 Why does the I/O take so long in this case?

 Why isn’t it busy writing data the whole time?

34

 Checkpoint writes from AMR

framework

 Uses HDF5 for I/O

 Code base is complex

 512 processes

 18.24 GB output file

Chombo I/O Benchmark

 Many write operations,
with none over 1 MB in
size

 Most common access size
is 28,800 (occurs 15622
times)

 No MPI datatypes or
collectives

 All processes frequently
seek forward between
writes

35

 Consecutive: 49.25%

 Sequential: 99.98%

 Unaligned in file: 99.99%

 Several recurring regular stride patterns

Two Months of Application I/O on ALCF Blue Gene/P

 After additional testing and
hardening, Darshan installed on
Intrepid

 By default, all applications compiling
with MPI compilers are instrumented

 Data captured from late January
through late March of 2010

 Darshan captured data on 6,480 jobs
(27%) from 39 projects (59%)

 Simultaneously captured data on
servers related to storage utilization

36

Top 10 data producers and/or
consumers shown. Surprisingly, most
“big I/O” users read more data during
simulations than they wrote.

P. Carns et al, “Storage Access Characteristics of Computational Science Applications,” forthcoming.

Application I/O on ALCF Blue Gene/P

Application Mbytes/s
ec/CN*

Cum. MD Files/Pr
oc

Creates/
Proc

Seq.
 I/O

Mbytes/Pr
oc

EarthScience 0.69 95% 140.67 98.87 65% 1779.48

NuclearPhysics 1.53 55% 1.72 0.63 100% 234.57

Energy1 0.77 31% 0.26 0.16 87% 66.35

Climate 0.31 82% 3.17 2.44 97% 1034.92

Energy2 0.44 3% 0.02 0.01 86% 24.49

Turbulence1 0.54 64% 0.26 0.13 77% 117.92

CombustionPhysics 1.34 67% 6.74 2.73 100% 657.37

Chemistry 0.86 21% 0.20 0.18 42% 321.36

Turbulence2 1.16 81% 0.53 0.03 67% 37.36

Turbulence3 0.58 1% 0.03 0.01 100% 40.40

37

P. Carns et al, “Storage Access Characteristics of Computational Science Applications,” forthcoming.

* Synthetic I/O benchmarks (e.g., IOR) attain 3.93 - 5.75 Mbytes/sec/CN for modest job sizes,
down to approximately 1.59 Mbytes/sec/CN for full-scale runs.

Darshan Summary

 Scalable tools like Darshan can yield useful insight
– Identify characteristics that make applications successful

– Identify problems to address through I/O research

 Petascale performance tools require special considerations
– Target the problem domain carefully to minimize amount of data

– Avoid shared resources

– Use collectives where possible

 For more information:
http://www.mcs.anl.gov/research/projects/darshan

38

S3D Turbulent Combustion Code

 S3D is a turbulent combustion
application using a direct numerical
simulation solver from Sandia
National Laboratory

 Checkpoints consist of four global
arrays

– 2 3-dimensional

– 2 4-dimensional

– 50x50x50 fixed
subarrays

39

Thanks to Jackie Chen (SNL), Ray Grout (SNL),
and Wei-Keng Liao (NWU) for providing the S3D
I/O benchmark, Wei-Keng Liao for providing this
diagram, C. Wang, H. Yu, and K.-L. Ma of UC

Davis for image.

Impact of Optimizations on S3D I/O
 Testing with PnetCDF output to single file, three configurations,

16 processes

– All MPI-IO optimizations (collective buffering and data sieving) disabled

– Independent I/O optimization (data sieving) enabled

– Collective I/O optimization (collective buffering, a.k.a. two-phase I/O) enabled

40

Coll. Buffering and
Data Sieving
Disabled

Data Sieving
Enabled

Coll. Buffering
Enabled (incl.
Aggregation)

POSIX writes 102,401 81 5

POSIX reads 0 80 0

MPI-IO writes 64 64 64

Unaligned in file 102,399 80 4

Total written (MB) 6.25 87.11 6.25

Runtime (sec) 1443 11 6.0

Avg. MPI-IO time
per proc (sec)

1426.47 4.82 0.60

Wrapping Up

 We've covered a lot of ground in a short time
– Very low-level, serial interfaces

– High-level, hierarchical file formats

 Storage is a complex hardware/software system

 There is no magic in high performance I/O
– Lots of software is available to support computational science workloads

at scale

– Knowing how things work will lead you to better performance

 Using this software (correctly) can dramatically improve
performance (execution time) and productivity (development time)

41

On-Line References

 netCDF and netCDF-4
– http://www.unidata.ucar.edu/packages/netcdf/

 PnetCDF
– http://www.mcs.anl.gov/parallel-netcdf/

 ROMIO MPI-IO
– http://www.mcs.anl.gov/romio/

 HDF5 and HDF5 Tutorial
– http://www.hdfgroup.org/

– http://www.hdfgroup.org/HDF5/

– http://www.hdfgroup.org/HDF5/Tutor

 Darshan I/O Characterization Tool
– http://www.mcs.anl.gov/research/projects/darshan

 Assorted ALCF-Specific suggestions:
– https://wiki.alcf.anl.gov/index.php/I_O_Tuning

42

http://www.mcs.anl.gov/research/projects/darshan
http://www.mcs.anl.gov/research/projects/darshan

