
 www.allinea.com

Debugging for Petascale

David Lecomber

david@allinea.com

CTO

www.allinea.com

Background

• Processor counts
growing rapidly

• GPUs entering HPC

• Large hybrid systems
imminent

• But what happens when
software doesn't work?

2006
2006

2007
2007

2008
2008

2009
2009

2010
2010

0

20

40

60

80

100

120

140

160

180

Systems in Top 500

8k - 32k
cores
32k+
cores

Year (June & November Lists)

www.allinea.com

Exploiting technology

• “Software has become the
#1 roadblock … Many
applications will need a major
redesign” - IDC HPC Update,
June 2010

– Most ISV codes do not
scale

– High programming costs
are delaying GPU usage

• Development tools are a
vital part of the solution

www.allinea.com

Introducing Allinea

• Developers of HPC tools since 2001
– Modern and easy to use tools for HPC developers

– Worldwide customer base from the smallest to the largest
systems

• Allinea DDT
– The market leading product for debugging

– Designed for both new and experienced programmers

– Scalable – the only Petascale debugger

– Usable – debugging is easy at 1, or 100,000 cores

www.allinea.com

Problems at Scale

• Increasing job sizes leads to unanticipated errors
– Regular bugs

• Data issues from larger data sets – eg. garbage in..., overflow

• Logic issues and control flow

– Increasing probability of independent random error
• Memory errors/exhaustion – “random” bugs!

• Race conditions (particularly MPI timing)

• System problems – MPI and operating system

– Pushing coded boundaries
• Algorithmic (performance)

• Hard-wired limits (“magic numbers”)

– Unknown unknowns
•

www.allinea.com

Strategies for bug fixing I

• Improved coding standards – unit tests, assertions
– Good practice – but coverage is rarely perfect

• Random/system issues – often missed

– Combines well with debuggers
• Find why a failure occurs not just a pass/fail

• Logging – printf and write
– If you have good intuition into the problem

• Edit code, insert print, recompile and re-run

• Slow and iterative

– Post-mortem analysis only
• Hard establish real order of output of multiple processes

• Rapid growth in log output size

• Unscalable

www.allinea.com

Strategies for bug fixing II

• Reproduce at a smaller scale
– Attempt to make problem happen on fewer nodes

• Often requires reduced data set – the large one may not fit
– Smaller data set may not trigger the problem

• Does the bug even exist on smaller problems?
– Didn't you already try the code at small scale?

• Is it a system issue – eg. an MPI problem?

– Is probability stacking up against you?
• Unlikely to spot on smaller runs – without many many runs

• But near guaranteed to see it on a many-thousand core run

– What can a parallel debugger do to help?
• Debug at the scale of the problem. Now.

www.allinea.com

Use a Parallel Debugger

• Many benefits to graphical parallel debuggers
– Large feature sets for common bugs

– Richness of user interface and real control of processes

• Historically all parallel debuggers hit scale problems
– Bottleneck at the frontend: Direct GUI → nodes architectures

• Linear performance in number of processes

– Human factors limit – mouse fatigue and brain overload

• Are tools ready for the task?
– Allinea DDT has changed the game

www.allinea.com

Scalable Process Control

• Parallel Stack View
– Finds rogue processes quickly

– Identify classes of process
behaviour

– Rapid grouping of processes

• Control Processes by Groups
– Set breakpoints, step, play,

stop for groups

– Scalable groups view:
compact group display

www.allinea.com

Handling Regular Bugs

• Immediate stop on crash
– Segmentation fault, or

other memory problems

– Abort, exit, error handlers

– CUDA errors

• Scalable handling of
error messages

• Leaps to the problem
– Source code highlighted

– Affected processes shown

– Process stacks displayed
clearly in parallel

www.allinea.com

Finding the cause

• Full class/structure
browsing
– Local variables and

current line(s)
• Show variables relevant

to current position

• Drag in the source code
to see more

– C, C++, F90: object
members, static members
and derived types

• Automatic comparison
and change detection
– Scalable and fast

www.allinea.com

Focussing on Differences

• Gathers data from every
node and compares
– Aggregated statistics

• Shows max, min, count,
averages, ...

– Optimizal performance
• Even in extreme

differences cases

• ~130ms total to compare
scalar variable from
220,000 cores

– Filter to find specific value
ranges

www.allinea.com

Large Array Support

• Browse arrays
– 1, 2, 3, … dimensions

– Table view

• Filtering
– Look for an outlier

• Export
– Save to a spreadsheet

• View arrays from
multiple processes
– Search terabytes for

rogue data – in parallel
with [v3.0]

www.allinea.com

Memory Debugging

• Comprehensive memory
debugging
– Find memory leaks

– Stop instantly on
read/write beyond end of
array

• Proven at scale
– Where random memory

bugs hurt!

www.allinea.com

DDT: Petascale Debugging

• DDT delivers Petascale
debugging today
– Collaboration with ORNL

on Jaguar Cray XT

• New tree architecture
– The only logarithmic

performance parallel
debugger

– Many operations faster at
220,000 than any other
debugger at 1,000 cores

– ~1/10th of a second1 to
step and gather all stacks
at 220,000 cores

0 50,000 100,000 150,000 200,000
0

0.02

0.04

0.06

0.08

0.1

0.12

DDT 3.0 Performance Figures

Jaguar XT5

All Step
All Breakpoint

MPI Processes

T
im

e
 (

S
e

co
n

d
s)

www.allinea.com

Summary

• Debuggers are recognized as the right tools to fix
bugs quickly: other methods have limited success,
and major issues at scale

• Debugging interfaces must scale to help the user
understand what is happening

• Allinea DDT scales in performance and interface –
breaking all records and making problems
manageable

www.allinea.com

DDT at ANL

• The BG/P is a challenging platform for debugging at
speed
– Compute nodes won't support a debugger

– IO nodes must look after the debugging for the compute
nodes – all 256 with Intrepid! (512 at Juelich!)

• .. Memory usage of debuggers needs to be low per process

• .. Performance is hit – too much work and communication for
one process

– Allinea worked with ANL to improve DDT memory usage
within each IO node: done!

– DDT now supports up to 256 processes per IO node

– … across as many IO nodes as you need!

www.allinea.com

Today's Session

• Worked examples
– Handout with worked examples and exercises

– Handful of simple codes with some bugs

– Listen out for where to find the code and the materials

• Hands on with own code
– Once you're confident in using DDT for simple problems

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18

