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Nuclear Reactor Simulations

= Nuclear fission energy is key component of our current and future energy needs

= Urgent need to develop reactors that are
— Safe
— efficient
— Affordable
= Modeling and simulation tools were simplified to match the available computing
technology
— designers relied on expensive and complicated experiments for satisfactory answers
= Advanced simulation can help in evaluating new designs with reduced dependence
on experiments
= This work is supported by Nuclear Energy Advanced Modeling and Simulation
(NEAMS) program of US Department of Energy



Case for Fast Reactor Simulations

High energy neutrons are used to convert uranium to
plutonium

Recycle the spent fuel from light water reactors (LWR) R

P

— Reducing heat load on storage because of lower
concentration of transuranic elements
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Through high fidelity simulations,

DRACS

— Lower uncertainty margins of the new reactor designs

e 1% improvement in daily power output translates to millions of
dollars for utility companies

Care

— Global design optimization for enhanced safety and cost




Simulation based High-efficiency Advanced Reactor
Prototyping (SHARP)

= A tight integration of multiphysics and multiscale modeling of physics
phenomena based on a first principles approach
— anintegrated system of software tools
— accurate description of

e the overall nuclear plant behavior in a high fidelity way

e coupling among the different phenomena taking place during reactor operation ranging
from neutronics to fuel behavior, from thermal-hydraulics to structural mechanics

= Features

— Ability to derive basic data and static and dynamic (operating conditions) properties
from first principles based methodologies and fundamental experiments

— to define and plug-in new and different combinations of physics-module
implementations to study different phenomena,

— define and combine different numerical techniqgues, configure the code easily to run
on new platforms

— develop new physics components without expert knowledge of the entire system.



Schematic diagram of a fast reactor
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Homogenization at various levels

-

Homogenized Homogenized
assembly assembly internals

Homogenized Fully explicit
pin cells assembly
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Fine Detail: Wire Wrapped Pins in Subassembly

= Resolving wire wrap (diameter = 0.11 cm) leads to 10-100 billion
element meshes and about 10*° degrees of freedom (DOF) for advanced
burner test reactor (ABTR) core (2.3 m in diameter and 3.5 meter long)
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UNIC: Neutronics Module in SHARP

— A 3D unstructured deterministic neutron transport code

— solves
e second order form of transport using FEM (PN2ND and SN2ND) and
o first order form by method of characteristics (MOC)

— Parallel implementation using PETSc solvers



The Steady State Transport Equation (p46 in Lewis)
Q-Vy(F.QE)+2,(F EW(F.QE) = [ [£,(7.Q > QE - Ey(#,Q,E)dQ dE’

+% 2. E)| [v(F.ENE, (7. EW (7, Q' EdQ' dE’

+S(7,C, E)
w(r,QE) The neutron flux (neutron density multiplied by speed)
2 (r,E) The total probability of interaction in the domain

> (7, Q' = QE'— E)YQAE  The scattering transfer kernel
x(r,E) v(F,E) X,(F,E) The steady state multiplicative fission source
S(r,Q.E) If a fixed source is present then k = 1

k The multiplication eigenvalue



Solving the Eigenvalue Problem

Ax=Ax Castthe transport equation as a pseudo matrix-vector operation

T = streaming/collision/scattering F = fission
A A A T
v={v,(7"Q) v,.Q) - YO

G N oY A
Ty =Q-Vy, F.O+2,, (7.0 - [T, . F.Q > Qy, (7.Q)dQ
g'=1
G - oA
Fy =1, [Ve(PZ, (W, (F,.Q)dQ'
g'=l1

Ty = %Fl// Standard eigenvalue notation: Ax=Ax
A=T'F

X=Y
A=k



k-Eigenvalue Power Iteration

Begin Outer Iteration
Begin Loop over energy groups
Begin Scattering iteration for the within-group scattering system
Begin Conjugate gradient over the whole space-angle system
Obtain group scattering+fission+fixed sources
Solve a symmetric positive definite linear system for flux
(preconditioned conjugate gradient)
End Conjugate gradient over the whole space-angle system
End Scattering iteration for the within-group scattering system
End Loop over energy groups
Check for convergence in eigenvalue, angular flux, and sources
End Outer Iteration



Features of Second Order Form Solutions in UNIC

= PN2ND and SN2ND solvers have been developed to solve the steady-state, second-order, even-
parity neutron transport equation

— PN2ND: Spherical harmonic method in 1D, 2D and 3D geometries with FE mixed mesh
capabilities
— SN2ND: Discrete ordinates in 2D and 3D geometries with FE mixed mesh capabilities
= These second order methods have been implemented on large scale parallel machines
— Linear tetrahedral and quadratic hexahedral elements
— Fixed source and eigenvalue problems
— Arbitrarily oriented reflective and vacuum boundary conditions
— PETSc solvers are utilized to solve within-group equations
e Conjugate gradient method with SSOR and
e |CCgives better flop rates but requires more memory (not used)
— Synthetic diffusion acceleration for within-group scattering iteration
— Inverse Power iteration method for eigenvalue problem
— MeTiS is employed for mesh partitioning



ABTR Whole-Core Calculations

Angular Spatial Mesh Approximation
Directions 78243 | 113873 | 461219 | 671219 | 785801
32 241 -233 -69 -64 59
50 -220 210 47 -40 37
72 -225 217 51
98 216 207 43
288 216
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ZPPR-15 Critical Experiments

Flux expansion order Scattering order Eigenvalue
0.99258
0.99640
0.99651

0.99616+0.00010

0.000

Computational Mesh and Example Flux Solutions of ZPPR-15 Critical Experiment

0.000
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aR Over a period of 30
years more than a
hundred Zero Power
Reactor (ZPR) critical
assemblies were

& constructed at Argonne
= National Laboratory.

E ZPR-3, ZPR-6, ZPR-9 and
ZPPR, were all separate
fast critical assembly
facilities with each
machine being used for
thousands of individual
experiments
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ZPR Test Problem

Single ZPR Drawer

Plate by Plate ZPR Geometry
A ZPR calculation is the first step to full core heterogeneous reactor calculations

Up to 50 million vertices (~equivalent to 200 million PARTISN finite difference cells)
100+ angles with P; anisotropic scattering
100 energy groups

No thermal-hydraulics considerations (i.e. clean comparison, MCNP/VIM solvable)



Parallelism in Space, Angle, and Energy

n Hierarchi_cal Partitioning by using MPI /IM //Ml //Ml /-

communicators

B Parallelization in every dimension is
important (to avoid per-core memory limit)

B User defined MPI communicators are not
always optimized for mapping to cores




Total Time to Solution (seconds)

Performance on Blue Gene/P - Strong Scaling

= 9 energy groups

=  Mesh (simplified geometry)
e 15 million vertices and 1.8 million hexahedral quadratic elements
e Spread over 4,096 processor cores (virtual node mode)
e 4 angles per processor-core

Strong Scalability

aEh \ +|Adchi|eved _|

2°°° 8,192 7,324 2,402 100%
N 16,384 3,662 1,312 92%
o TS | 124576 2,441 873 92%
> 02% scalabilty 32,768 1,831 637 94%

0 5000 10000 15000 20000 25000 30000 35000
Number of Cores



Performance on Blue Gene/P - Weak Scaling
ANL: 40 racks (163,840 cores); JSC: 72 racks (294,912 cores)

Weak scaling important for scoping studies

9 energy groups

Mesh

e 7 million vertices and 1.7 million hexahedral quadratic elements

e Spread over 4,096 processor cores (virtual node mode)

e 2 angles per processor-core

32,768
73,728
131,072
163,840
294,912

32
72
128
160
288

579
572
581
691
763

100%

101%

100%
84%
76%



Performance on XT5
Recently upgraded hex-core system, 2.6 GHz, 225K total cores

= 33 energy groups

= Mesh (real experimental geometry)
e 10 million vertices and 2.4 million hexahedral quadratic elements
e Spread over 2,064 processor cores

e 2 angles per processor-core

Total Total Time Weak
Cores Angles (seconds) Scaling

16,512 1891 100%
37,152 72 1901 99%

66,048 128 1829 103%
103,200 200 2050 92%

148,608 288 2298 82%
222,912 432 2517 75%
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Performance Optimizations

= Reordering for better cache reuse

= Unrolled loops for specific element types (better vectorization)
=  Weighted partitioning for load balance in mesh partitioning

= Fixed iteration scheme for load balance across angular systems
= Eisenstat’s Trick (lower flop rate but better execution time)
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Performance Optimizations -
Execution Time Reduced by a Factor of 4 on 16,384 Cores
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Assessing the Single Core Performance

= Execution time was optimized (often) at the cost of flops (likely unnecessary)

= Sparse matrix vector multiplication (BLAS Level 2) operation is the main kernel
— Performance is memory bandwidth limited (little data reuse)
— High ratio of load/store to instructions/floating-point ops
— Flops not the right metric
— Inadequate memory bandwidth on both architectures
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Stream Benchmark on Cray XT5 and BlueGene/P
(MB/s for the Triad Operation)

1 8448 8448 2266 2266
2 10112 5056 4529 2264
4 10715 2679 8903 2226

6 10482 1747




ldeal Sparse Matrix-Vector Performance

Required: 6 bytes/flop

; Peak MFlop/s | Bandwidth (GB/s) | Ideal MFlop/s
Machine ;
per core Required | Measured
Blue Gene/P 3,400 20.4 2.2 367
XTS5 10,400 62.4 L7 292




Summary

UNIC provides reactor designers a scalable and flexible simulation tool that has
the potential to transform the reactor analysis field by exploiting
supercomputing with far reaching consequences on reactor development cost

and safety.
We were able to resolve the complex geometric features of the full ZPR core
geometry for the first time.
UNIC scales well on the two largest machines:
— 76% on 294,942 cores of Blue Gene/P (ANL& JSC, Jugene is the largest in core count)
— 75% on 222,912 cores of XT5 (ORNL, #1 in TOP500)
— Uses up to 500 billion degrees of freedom

No other code in the field (deterministic neutron transport) has scaled to this
level or solved full core-sized problems with this fidelity.

Computational challenges need to be tackled at the modeling, algorithmic, and
architectural levels for future machines with millions of cores.
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