The Promise of Supercomputing for
Optimal Management of Energy Systems

Mihai Anitescu

Mathematics and Computer Science Division
Argonne National Laboratory

anitescu@mcs.anl.gov

Emil Constantinescu (Wilkinson), Victor Zavala (ANL Director’s Postdoc)
Matt Rocklin, Sangmin Lee, Theodore Krause,

Supercomputing 09
November, 2009



Electricity Supply - Billions r Marke

Challenges of the Next-Generation Power Grid
- Major Adoption of Renewable Resources (20-30%)

- Highly Decentralized Generation and Demand

United States
transmission grid
Source: FEMA
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Objective 1: Uncertainty quantification in weather
forecast: A test case with real data

Importance in Energy Systems Management
— Weather influences both energy supply (wind/solar/thermal) and demand

— Accurate weather/climate forecast leads to an efficient proactive resource management
(reduces needed reserves and cost, though not consumption directly).

Weather forecasting at the renewable energy (RE) system scale (1km) is a grand challeng:
— very large-system, difficult to simulate ’ '
— Chaotic,

— incomplete/missing physics

— unknown initial conditions, uncertain forcings

— Lack of information makes deterministic prediction impossible, we must quantify and
compute uncertainty in weather forecast (i.e. its probability distribution).

Objective 1: Is there hope of predicting the probability distribution of weather
at RE scale operationally ? (24 hour ahead in 1 hour at 1 km)?
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Objective 2: What is the economic impact of using
weather (and demand/pricing) forecast in energy
management

= The impact strongly depends on the decision system and of the way it accounts for
risk.

= We posit the decision problem under uncertainty as a stochastic programming
problem.

= Note that we do not expect to reduce consumption, (that is design, not
management), but we expect to be able to reduce cost, and implicitly
— Reduce the risk of not meeting demand

— Reduce the peak requirements on power grid and this increase resilience by optimally
answering to the appropriate incentives (such as electricity pricing).

= Question 2: For realistic Independent System Operator Problems, Building
Systems, and Photovoltaic Systems, what are the expected cost reductions?

Mathematics and Computer Science
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Forecast and Uncertainty
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Uncertainty in dynamical systems: 1. Data

= Assume a time-discretized process with imperfect initial state and forcing
information and noisy measurements.

The dynamic model is depicted as for k=0, ---, K

X" = M(x{y) + Wy, (1)
z,‘ibs = H(x;;")+ Vi, (2)
where
Wi = N (Xx, Q)
and

Vi = N0, R;").

We want find D(x}",---, x/7)’s mean and variance.
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Uncertainty in dynamical systems: 2. the
posterior.

= Under the typical 4D Var assumptions (normality of noise and input and
independence) we can write down the posterior ...

obs obs obs obs

P(J?;:n@?—le“wwmzo 121 3 R2 5T s R )=C’\Ck

P(ZobS)

- exp ( o %f(in ZobS))

FX™,Z7%) =) (@ — @ - Gltio1,2i7) Q@ — i — Y(tim1,2iy))

k
+Z(zf’bs — hi (G (ti, ) R (28 — ha( (8, 2"

=  Avery difficult distribution to sample from.
= Solution: first, find the best estimate of the state.

= Then, approximate the prior covariance by an ergodic/Gaussian Process
method.
Mathematics and Computer Science
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SteE 1: Movmg Horizon Best State !!stlmatlon
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SteB 2: Estimate the prior covariance matrix.

N (x¢, I1p)

x(t)

X0

Reconciliation

Forecast

(

to—N

*Use some form of an ergodic hypohesis. Take

zk‘

*“Guess” the diagonal of the variance matrix

~ ddT =

Z d@J dkg
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° Latitude N

SteE 2 b: Fit to a Gaussian Process.

Covariance Matrix is Huge and low rank (106 x 10°) But ...

- Spatial Correlations Decay Exponentially constantinescu, et.al., 2007

- Covariance Can be Approximated Using Gaussian Kernels Zzavala, Constantinescu & A, 2009

. i2+ L i2 ._i2
H:,z‘,j=eXp (_(xj af)L%I(yj Yi) _(ZJL‘;))
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Ensemble Forecast AEEroacﬂ

Ensemble Forecast Approach — Use WRF as Black-Box

Sample Prior and Propagate Samples of Posterior Through Model

Y g1 += Xi(tegj) = MM M(xi(0))))

j times
NS
NS Z
1 NS _ -
~ NS -1 ; Y = Y)Y — Y)

40

Confidence Interval

W
(8,

recast

Temperature [°C]
N
(8)]

20f LY Validation Results, Pittsburgh Area 2006
ysf ~ Measurement . 5 Day Forecast and +/- 3G Intervals
. Building applications
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Uncertainty quantification and forecast using WRF

Correlation

t t
* WRF model: z'F = My, ¢, (z%°) 1
N Y correlation
¢ — C’L] jGauss (270 km.) 08
= Uncertainties in the initial conditions: ;" = Tnarr + L&; T N
P correlation
. ¥ distance = 270 km
& ~N(0O,I),i€[l, Ng], LLT =P, C;; = X
PiiPj;
0.2
= Evolution of uncertainties through WREF: | SBA LTV |
0 200 400 600 800 1000

Distance [km.]

fo — Mt0—>tF (5’320) + ni(t)
ZE;?O NN(xNARRyptO)a T NN(07Q)7 1€ [17NS]

= Uncertainty at the final ime: ;" ~ N (z,S?) Pto:/\/\/\
r
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Closed loop simulation using WRF

= 24-hour simulation window — restart from assimilated solution (NARR) every 12 hours

= Restart ensemble with adjusted spread ,/\/'\/\
based on error estimates: NN

vi - T+y(@~7), i€ [1,Ns] NN

: 12— 24 hr :
v =maz (1, min (v,,4)) S —_—

‘xNARR — f’

o

Yo — €Ay Vv, T|k=1...5 (

= Error is underestimated: increase uncertainty

Wind speed [m/s]

e N .
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Mathematics and Computer Science

S 11/17/09

18 30 42 54 66 78 90 102
Local time from June 1 [hours]

14



Implementation and Estimation
of Necessary Computational
Resources
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Ensemble forecast and uncertainty quantification

with WRF on Jazz

=  Computational domain setup

N
(6}
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492 - 6km?
126 x 121
#3 - 2km?
202 x 232

-120 -110 -100 -90 -80
° Longitude W

= Jazz: 350 nodes; Intel Pentium IV Xeon@ 2.4GHz; 1 or
2 Gb RAM per node; Myrinet 2000 @ 0.25 GB/s, 6-8

usec latency

= 24 hours [simulation time] in one hour [real time] on

Jazz with 30 members on 500 processors;
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WRF scalability on Jazz

= Two-level parallelization scheme — very
scalable: (A) realizations are independent,
(B) each is parallelized, and (C) explicit

b o

(A)

Grid Size

US: | #1 - 32km* | 130 x 60
#2 - 6km* | 126 x 121
lllinois: | #3 - 2km® | 202 x 232

Mathematics and Computer Science

(C)
1 member
101 24 hours

—»— Scalability on Jazz
- e~ Linear Scalability

N

A

CPU | Wallclock
[min]

1 157 .

8 95 °

16 65 32p/member
32 45

10° 10’ 10°
CPUs

= 24 hours [simulation time] -> one hour [real
time] on Jazz with 30 members; [2 km];
(almost) linear scalability with area (C)

= ¢/ lllinois [2km]: 500 processors
= [ ] US [2 km]: ~50,000 processors

= [ ] US [1 km]: ~400,000 processors
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Validation of the results

Mathematics and Computer Science
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Wind power measurements and windmill locations

Wind speed [m/s]

Wind turbine locations and weather stations locations

in lllinois:

Real wind and temperature measurements for

hindcast (June 2006) ~every 20 min.

Real wind power measurements for

Chicago and Peru, IL:

Local time from June 1% [hours]
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Wind power is difficult to predict
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Validation of the wind/temperature forecast and

uncertainty
= Wind/temperature validation of uncertainty estimates with real measurements

T T ! T T ' ' 35; T T T T T ' '
o wind ol temperature

= | °

H 2 m
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= Temporal [trends] and spatial [similar outcomes] correlations provide additional info
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Optimization under Uncertainty
by Stochastic Programming

Mathematics and Computer Science
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Rolling Horizon Optimlzazlon

Benefits: Accommodate Forecasts, Constraint Handling, Financial Objectives, Complex Models

Deterministic

f(z(),y(t), u(t), E[x(¥)])
g(z(2),y (1), u(t), E[x(1)])
h(z(2),y(2), u(®), E[x(¥)])

Ty

2

Complexity (Solution Time)

x(7)
. BN
/”""’ _.\.\- —-""’
>
tg tg--|--'1ﬂ
Stochastic
t
min E /H-N o(z(t),y(t),u(t),x(t))dt
u(t) x(t)e2 [ty 7]
d
d—i = f(z(t),y(t),u(t),x(t))
0 = glz(t),y(@®),u(t),x(®)) [
0 > h(z(®),y(t),u(t),x(t)) Vx(t) €
z(0) = zy B

1,000 - 10,000 Differential-Algebraic Equations

100-1000 Scenarios




Stochastic Rolling Horizon (’pzlmlzazlon

Solution Strategies

- Dynamic Programming, Taylor Series: Handling Constraints and Nonlinearity Cumbersome
- Polynomial Chaos: Dense Optimization, Multivariable Quadrature

- Sample Average Approximation (SAA): Sparse Optimization, Constraints, General Framework

min B | [ e, 50, v, x()d
u(t) x(t)e | /te
d -
— = (0, y(1), u(t), x(1))

0 = gz®),y®,u®.x®) Ly, (1) e 0

0 > h(z(t),y(t),u(t),x(t))
z(0) = zy _
Nonlinear Programming: Exploit Fine and Coarse Structures at Linear Algebra Level
L i (2L, Yk, U, X&)

kr» Yk, Uy Xk B 1T b r
S =1 K1 Qi || Asy 1
s.t. c(zp, yp,u,xx) =0 Ko @2 || As2 | T2
h(Zk.,yk,u,Xk) S 0 KS QS ASS' rs
=1,..,8 Q@ @5 - Qg Du| Au | [ru




Basic Operational Seﬁlng

k
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A Optimization
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Forecast X (1), V(1)
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Quantifying Uncertainty Key Enabler



Digression about the Suitability of Stochastic

Programming for Energy Systems w Renewables

SAA Stochastic Programming Approximation.

. S

min 1

u = E : Qo(zkayk)ua Xk)
Sk=1

s.t.  c(zp,Ypu,x) =0
h(zkn Yk, 4, Xk:) <0

k=1,...58
="0One weakness of stochastic programming is that it assumes a
distribution is given. In most applications of interest, the distribution has
to be modeled from data using some knowledge of the application.
=|f the uncertainty originates in weather forecast, there is a strong
empirical and theoretical basis to create the distribution, or, at least to
sample from it.
=To our knowledge this is the first time even a moderately complex
energy system was managed using stochastic programming with real
and operational weather uncertainty.
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Sequential Decision Making Under Uncertainty:
Stochastic Dynamic Programming

= Stoc DP is the most distinguished framework,
though rarely (ever ?) approached from HPC.

= Example: In Production and Inventory Planning:

— Recursive Cost at the beginning of stage t :
f(I,w

1!(f—1)) =max(O,dt—I)sx
min(C,d, +B-1I)
— Functional approximation in an T*D (D~1000s)
dimensional space !l It suffers from the curse of
dimensionality ... but so does sampling.

— Could HPC make inroads? We believe so but
development cost restricts us to rolling horizon.

min Et [Ct(X,a)t)+ft+1(I+X—dt,(1)1:t ]
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App 1: The operator’s (ISO-IL) problem Unit
commitment with wind power generation. v

Zavala, M. Anitescu, M.

Deterministic problem: _
Rocklin, S. Lee]

. D U d
min Z Z Cik T CikTCik

PikesBj e

JEN keT
s.t. Z Pk + Z E {p¥i**} = Dy,
JEN FE€ENwind
D Pt D BN =Dt B

jEN jENwind
Stochastic program formulation:

1
min o YUY DY & e+

-kl7_ . e .
psvj, ps,j,k SGS jeNkeT

s.t. ZPSJ”“ + Z p';ﬁf‘;f = Dy,

jEN jENwind

D Pejrt D PO > Di+ Ry

jEN jENwind
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Wind power forecast and stochastic programming

= Unit commitment & energy dispatch with uncertain wind

power generation for the State of Illinois, assuming 20% wind /\/\/\/\—>‘ /
power penetration, using the same windfarm sites as the on¢  wind \“; ¢

existing today. power

=Full integration with 10 thermal units to meet demands.
Consider dynamics of start-up, shutdown, set-point changes

= The solution is only 1% more expensive then the one with
exact information.

1200
1000
800
600

400

Total Power [MW]

200

0

Time [hr]
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Ap2: Thermal management of building in Pittsburgh

= Minimize annual heating and cooling costs ambient

temperature
= Time-varying electricity prices (peak/off-peak)

= Forecast with uncertainty leads to 20-80% cost reduction
(insulation quality)

100 T T T T T T T
1hr

~ O o0}
o O o

Relative Cost [%]

N
o

Temperature

Ambient 7\ ‘

NN\

24 hr Ta(T)

HVAC

o

1 hr 3 hr 6 hr 9hr 12 hr 16 hr 24 hr

T R AT AR
S A R R

4
:

Wall

N A

System

)
o

Temperature [°C]
V
=
| =
=
_—
7

—— 24hr forecast
15 1hr forecast [Zavala, Constantinescu,
0 2 4 6 8 10 Krause, and Anitescu, 2009]

Time [Days]
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AP3: Hybrid Photovoltaic-H, System in Hﬂlcago, 19

PV-Generator

Solar
Radiation
Load Demand
A
MPPT
DC-Busbar *
L A

Power | | 2 pcoe —_ . 7
L <—i—— = /Converters\ = ’ i
osses | i — |
Power i Electrolyzer Fuel Cell Secondary i
Losses ' Battery |
I l :
1 I
I H2 \ |

' 4 4 1 Storage

: Buffer Power ! &

: Losses :
: H,-Storage |
: Compressor O, or Air :

* Operating Costs Driven by Solar Radiation vieberg, 2004

* Performance Deteriorated by Power Losses
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* Costs Reduced By 300% From 1-Hr to 14-Day Forecast

S * Close-to-Optimal Profit Achieved with 1 Day Forecast
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Is it worth using Stochastic Programming and
WREF? Or there are simple bypasses?

"The case for forecast seems clear. But how about
®(Q1) Do I need Stochastic Programming and uncertainty?
Maybe if | do deterministic programming on average it is
sufficient.
"(Q2) Do | need WRF to do it? Or can | get by with
massaging historical data.

="\We Present evidence of Yes on both counts.



App 1: Regional SO commitment

"Deterministic strategy (Programming on average) cannot
satisfy demand beyond 10% wind penetration (The reserves
help some).

"Evidence for Q1=VYes.



App 3: Hybrid Photovoltaic-H 5 gystem

Load Satisfaction Deterministic (“Optimization on Mean”) vs. Stochastic

b | | | | | |
— Det inisti e o . . .
all . Swenestio Deterministic Fails to Satisfy oad
X

— 3¢t _
L,
w2t il
S
© 1 gk | o ¥ ! : : b !1!-‘:.‘;‘.;.‘%:“‘-

o WFRARL_ ILALLILAL A2 1 L MRS

-1 ! ! ! ! ! !

0 50 100 150 200 250 300 350

Time [Days]

Therefore, the alternative to stochastic programming can turn out infeasible !!

Handling Stochastic Effects Particularly Critical in Grid-Independent Systems where no

recourse.

Evidence for Ql=Yes.



App2: Thermal Management of Building Systems

Performance Optimizer using WRF and GP Model Forecasts. Evidence for Q2=Yes.
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Conclusions and Future Work

Integrative Study of Weather Forecast-Based Optimization

Far as we know this is the first integrative study using validated WRF Model for
an operational setting (1km, 1 day ahead, in 1hr).

We showed that stochastic formulation matters hugely for satisfying constraints.

Weather uncertainty is a hard, important, problem that data-only methods (such
as GP) are unlikely to crack.

We showed that weather forecast inclusions results in 20-80% cost reduction for
rolling horizon.

Future and On-Going Work

Better posterior sampling for weather forecast uncertainty.

Dynamic Programming Formulations and comparisons with rolling horizon.
High-resolution physics in WRF (feedback from wind farms?).

Solving larger Stochastic MINLP problems.

Modeling pricing and demand uncertainty.

Real time cost-efficient techniques (buildings and PV).



Promise of HPC for Integrated Energy Systems
Management

1. Predicting Weather Forecast with Uncertainty Operationally.

400K Processors would provide in one hour wall clock time 30 WRF
Ensemble Members for the next 24 hours at 1 km resolution for the
entire US. (Source: Extrapolation of Profiling)

2. Stochastic Dynamic Programming as a resource management strategy for
Regional System Operators. ~ 10s of billions of dollars worth of activity
per year. (Source: Our educated guess).



.
References. (from the Speaker’s Web Site)
= Accepted/Published.

*Victor Zavala, Emil Constantinescu, Theodore Krause, and Mihai Anitescu." On-line economic
optimization of energy systems using weather forecast information. To appear in Journal of
Process Control. Volume 19, Issue 10, December 2009, Pages 1725-1736 DOI:

10.1016/j.jprocont.2009.07.004
*Victor M. Zavala, Mihai Anitescu and Theodore Krause. "On the Optimal On-Line Management

of Photovoltaic-Hydrogen Hybrid Energy System". Preprint ANL/MCS P1569-0109Proceedings of
the 10th International Symposium on Process Systems Engineering - PSE2009, Rita Maria de Brito
Alves, Claudio Augusto Oller do Nascimento, Evaristo Chalbaud Biscaia Jr. (Editosr. )Computer
Aided Chemical Engineering, Volume 27, Pages1953-1958, 2009 Elsevier, Amsterdam.

sSubmitted

="Emil Constantinescu, Victor Zavala, Matthew Rocklin, Sangmin Lee, and Mihai Anitescu. A
Computational Framework for Uncertainty Quantification and Stochastic Optimization in Unit
Commitment with Wind Power Generation. Submitted to IEEE Transactions on Power Systems.
*Victor M. Zavala, Emil M. Constantinescu, and Mihai Anitescu. Economic Impacts of Advanced

Weather Forecasting in Energy System Operations. Submitted to the IEEE-PES conference
.PDF Version.




