Parallel Scripting for Science
Applications at the Petascale
and Beyond

Mike Wilde
wilde@mcs.anl.gov

Computation Institute, University of Chicago
and Argonne National Laboratory

www.ci.uchicago.edu/swift

COVER FEATURE

PARALLEL
SCRIPTING FOR
S APPLICATIONS AT
SN THE PETASCALE
AND BEVOND

Michael Wilde, Ian Foster, Kamil Iskra, and Pete Beckman,
University of Chicago and Argonne National Laboratory

Zhao Zhang, Allan Espinosa, Mihael Hategan, and Ben Clifford, University of Chicago

Ioan Raicu, Northwestern University

IEEE COMPUTER, Nov 2009

Overview

 Parallel scripting as a model for large-scale
computing

« An architecture for petascale parallel scripting
— Swift
— Collective data management
— Resource provisioning and fast task dispatch

— POSIX operating systems
* Application examples

Swift is...

* A language for writing scripts that:
— Process large collections of persistent data

— with large and/or complex sequences of
application programs

— on diverse distributed systems

— with a high degree of parallelism

— persisting over long periods of time

— surviving infrastructure failures

— and tracking the provenance of execution

A simple Swift script

type imagefile; // Declare a "file” type.

app (imagefile output) flip (imagefile input) {

{
convert "-rotate” 180 @input @output ;

J

imagefile stars <"orion.2008.0117.jpg">;
imagefile flipped <"output.jpg">;

flipped = flip(stars);

Parallelism via foreach { }

type imagefile; // Declare a “file” type.

(imagefile output) flip(imagefile input) {
app {
convert "-rotate” "180" @input @output;
}

) a B

Map inputs from local directory

imagefile observations[]|<simple _mapper; prefix="orion”>;

imagefile flipped]] <simple_mapper; prefix="orion-flipped”>;
- Name outputs based on index)
/foreach obs,i in observations { ™

flipped][i] = flip(obs);

}
Process all dataset members in parallel

A)

Why script in Swift?

* Write scripts that are high-level, simpler, and
location-independent: run anywhere

— Higher level of abstraction makes a workflow script
more portable than “ad-hoc” scripting

« Coordinate execution on many resources over
long time periods

— This is very complex to do manually — Swift
automates it

« Enables restart of long running scripts
— Swift tracks jobs in a parallel script completed

Swift programs

A Swift script is a set of functions
— Atomic functions wrap & invoke application programs
— Composite functions invoke other functions

Data is typed as composable arrays and structures
of files and simple scalar types (int, float, string)

Collections of persistent file structures are mapped
Into this data model as arrays and structures

Members of datasets can be processed in parallel

Statements in a procedure are executed in data-flow
dependency order and concurrency

Variables are single assignment
Provenance is gathered as scripts execute

Application: 3° Protein structure prediction

type Fasta;

type SecSeq;
type RamaMap;
type Ramalndex;
type ProtGeo;
type SimLog;

type Protein {
Fasta fasta;
SecSeq secseq;
ProtGeo native;
RamaMap map;
Ramalndex index;

}

type PSimCf {
float st;
float tui;
float coeff;

}

type ProtSim {
ProtGeo pgeo;
SimLog log;

}

/I Primary protein sequence file in FASTA format
/I Secodary structure file
/l “Ramachandra” mapping info files

// PDB-format file — protein geometry: 3D atom coords

/I Input file struct to protein simulator
/[sequence to predict structure of
/I Initial secondary structure to use
/[3D structure from experimental data when known

I/l Science configuration parameters to simulator

// Output file struct from protein simulator

Protein structure prediction

app (ProtGeo pgeo) predict (Protein pseq)

{
PSim @pseq.fasta @pgeo;

}

(ProtGeo pg[]) doRound (Protein p, int n) {
foreach sim in [0:n-1] {
pg[sim] = predict(p);
}
}

Protein p <ext; exec="Pmap", id="1af7">;
ProtGeo structure] |;

int nsim = 10000;

structure = doRound(p, nsim);

Protein structure prediction

(ProtSim psim[]) doRoundCf (Protein p, int n, PSimCf cf) {
foreach sim in [0:n-1] {
psim[sim] = predictCf(p, cf.st, cf.tui, cf.coeff);

}
}

(boolean converged) analyze(ProtSim prediction[], int r, int numRounds)
{
if(r == (numRounds-1)) {
converged = true;
}
else {
converged = false;

}
}

Protein structure prediction

ItFix(Protein p, int nsim, int maxr, float temp, float dt)
{

ProtSim prediction[][];

boolean converged| |;

PSimCf config;

config.st = temp;
config.tui = dt;
config.coeff = 0.1;

iterate r {
prediction[r] =
doRoundCf(p, nsim, config);
converged]r] =
analyze(prediction[r], r, maxr);
} until (converged|r]);

}

Protein structure prediction

Sweep()
{
int nSim = 1000;
int maxRounds = 3;
Protein pSet[] <ext; exec="Protein.map">;
float startTemp[] =[100.0, 200.0 |;
float delT[]1=[1.0, 1.5, 2.0, 5.0, 10.0];
foreach p, pn in pSet {
foreach t in startTemp {
foreach d in delT {
ItFix(p, nSim, maxRounds, t, d);

} 10 proteins x 1000 simulations x
} 3 rounds x 2 temps x 5 deltas
} = 300K tasks

1af7 69

1r69 61

a

a

25

25

25
50
10

25
50
10

25
50
10

25
50
10

3.77
3.60
3.77

3.20
3.78
3.01

3.20
4.09
3.87

3.76
2.94
3.87

2.5

2.4

1dcj

1ubq

72

73

o/

o/

25

25

25
50
10

25
50
10

25
50
10

25
50
10

8.75
9.11
[.22

8.34
7.69
8.94

6.68
7.05
6.00

6.88
8.29
8.01

T1af7 69 25 100 2.07 2.5
T1b72 50 25 100 1.41 1.6
T1r69 61 25 100 2.11 2.4

Energy

—700

=750

—800 -

-850

—900 -

-950

—1000

—1050

—1100

Choose run:

1 10930utdir.1 v v|[Enter |

lkey |AverageRunTime |LowestRMSD [LowestRMSDEnergy |PredictionEnergy [Prediction RMSD) [Total Runs
|T1af7—5o—5oo |50995 |2.34647 |—960.561 |—1o47.o |3.7o1g4 |985
|T1b'?2-5o-5oo |36777 |2.10575 |—469.571 |-568.818 |3.20041 |1012
[T1dej-50-500 _[12617 30753 |-2584.0 |-5591.67 |8.47168 l995
|T1di2-5o—5oo |13484 |3.4034 |—52El1.6g |—8442.19 |5.7B59Eu |1005
|T1mky—5o—5oo|12129 |5.61484 |—3885.61 |—4?2g.66 |8.55371 |1004
|T1r69—50-500 |34oo1 |2.23661 |-592.601 |-664.585 |'?.?2925 |998
|T1tif-5o-5oo |go5o |4.1065 |-4994.31 |-6344.37 |g.34496 |1012
[T1ubg-50-500 14857 484337 |-46iq5.08 [-7223.23 lo.56997 lgg1

T1laf7-50-500

.o.o °ge
° ’.‘ ° o
.o’o Q..:'
.:.o..o....‘o.
e ’0 . ®
s

6
RMSD

10

12 14

Table 1. Example parallel scripting applications.

Description

Characteristics

Astronomy Creation of montages from many digital images Many 1-core tasks, much communication, complex Experimental
dependencies
Astronomy Stacking of cutouts from digital sky surveys Many 1-core tasks, much communication Experimental

Biochemistry*

Analysis of mass-spectrometer data for post-
translational protein modifications

10,000-100 million jobs for proteomic searches using
custom serial codes

In development

docking/screening

Biochemistry* Protein structure prediction using iterative fixing Hundreds to thousands of 1- to 1,000-core simulations | Operational
algorithm; exploring other biomolecular and data analysis
interactions

Biochemistry* Identification of drug targets via computational Up to 1 million 1-core docking operations Operational

Bioinformatics*

Metagenome modeling

Thousands of 1-core integer programming problems

In development

structural equation modeling, 100,000+ tasks

Business Mining of large text corpora to study media bias Analysis and comparison of over 70 million text files of | In development

economics news articles

Climate science | Ensemble climate model runs and analysis of Tens to hundreds of 100- to 1,000-core simulations Experimental
output data

Economics* Generation of response surfaces for various eco- | 1,000 to 1 million 1-core runs (10,000 typical), then Operational
nomic models data analysis

Neuroscience* Analysis of functional MRI datasets Comparison of images; connectivity analysis with Operational

surgical planning research

Radiology Training of computer-aided diagnosis algorithms Comparison of images; many tasks, much In development
communication
Radiology Image processing and brain mapping for neuro- Execution of MPI application in parallel In development

*Note: Asterisks indicate applications being run on Argonne National Laboratory’s Blue Gene/P (Intrepid)

and/or the TeraGrid Sun Constellation at the University of Texas at Austin (Ranger).

17

CIM-EARTH: Modeling uncertainty

United States Western Europe Rest of Europe Mexico

—40 -

—40 -40 8
2010 2020 2030 2040 2050 2060 2010 2020 2030 2040 2050 2060 2010 2020 2030 2040 2050 2060 2010 2020 2030 2040 2050 2060
China+ Russia+ India Middle East/North Africa
. 40 /‘
20
0

= -2 N
2010 2020 2030 2040 2050 2060 2010 2020 2030040 2050 2060 2010 2020 2030 2040 2050 2060 2010 2020 2030 2040 2050 2060
United States Western Europe Rest of Europe Mexico
40 40 40
20
0 —«-
-20 o
-40 - 40
2010 2020 2030 2040 2050 2060 2010 2020 2030 2040 2050 2060 2010 2020 2030 2040 2050 2060 2010 2020 2030 2040 2050 2060
China+ Russia+ India Middle East/North Africa
40 . & 4 40 g

40 T
2010 2020 2030 2040 2050 2060

2010 2020 2030 2040 2650 2060 2010 2020 2030 2040 2050 2060 2010 2020 2030 2040 2050 2060

Figure 4. CIM-EARTH energy-economics parameter sweeps of 5,000 models exploring uncertainty in consumer (top) and

industrial (bottom) electricity usage projections by region for the next five decades.

Swift parallel scripting architecure

site

SwiftScript (
swift

-

:L command

— .

\/- _/

Data
et | [[
_ YS/

<

Workflow |
Status
\fﬁjf[lf¥1§— data

rovenance

Worker

Nodes

@

[Iauncher

5 2)
©

[Iauncher

o >
I\)%J
—

-
u‘_

Environment for Grid scripting

Grid Client Grid Resources at UW .9
S3
L Grid G2
Application Grid Middleware ali
User Storage
Interface
Swift & Grid Grid Resources at UCSD o
ri < (21
. Grid Protocols > - Grid é i
Middleware Grid Middleware <5
T Storage
w
Resource,
Workflow N Grid Resources at ANL o
And Data A — Grid £
Catalogs Grid Middleware gz
Storage @

Swift runs on the grid client or “submit host”

* Sends jobs to one or more grid sites using GRAM and Condor-G
« Sends files to and from grid sites using GridFTP

« Directory to locate grid sites and services: (ReSS)

« Can also run on local hosts, or directly on a local cluster

« Can overlay a faster scheduling mechanism (Coasters, Falkon)

Architecture for petascale scripting

scripts | > | scripting language, task coordination,
throttling, data management, restart

M
[Collective data management:

Dataset Z>

=

broadcast of large common datasets,
scatter and gather of small files

M,

Command |5 Falkon:
lists ultra-fast task dispatch and load

balancing over processor sets

M
i:gltls ZeptoOS: v

Z> full Linux with fork/exec, dynamic Id and
torus/collective net access

applications

fii

Architecture for petascale scripting

. . Falkon services
Swift script on BG/P 10

Processors BG/P Processor sets

e

(-)

/ ®

®

Falkon client 7{ a
(load < Small, fast, local
balancing) Shared memory-based filesystems

global
filesystem
N— A

Collective data management is
critical for petascale

* Applies “scatter/gather” concepts at the file
management level

« Seeks to avoid contention, maximize
parallelism and use petascale interconnects
— Broadcast common files to compute nodes
— Place per-task data on local (RAM) FS
— Gather output into larger sets (time/space)
— Aggregate small local FS's into large striped FS

 Still in research — topic of new EAGER grant

Performance: Molecular dynamics on BG/P

1,000,000 500
900,000 Processors - ——

g Active tasks /

800,000 —— w== Tasks completed
| |, | == Throughput (tasks/sec) /

700,000] —
600,000 14 —
500,000 - ; —
400,000 T — —
300,000 1 e
200,000 4 f
100,000 -+

2

=

=

Tasks completed
Throughput (tasks/se)

=

0 T T T T T . - 0
0 1200 2400 3600 43800 6,000 7200
Time (sec)

120,000
100,000 -
80,000
60,000
40,000 -
20,000 -
0

Processors
Active tasks

S

(a

935,803 DOCK jobs with Falkon on BG/P in 2 hours

Performance: SEM for fMRI on Constellation

450,000
400,000
350,000
300,000
250,000
200,000
150,000
100,000
50,000
0

Tasks completed

1,200

1,000 -

o GO

Processors
-SZ288

(b)

2
418K SEM tasks with Swift/Coasters on Ranger in 41 hours

Time (sec)

Il

0 14400 28,800 43200 57,600 72,000 86400 100,200115200 129,600 144,000

[T
o

%0
80

~J
L)

S 8 8 8 8
Throughput (tasks/sec)

—
)

Active tass

5

Performance: Proteomics on BG/P

Tasks Completed

—
-, — .
-
—

Throughput (tasks/sec)

1,600 -
1,200 -
300 -
400 -
(0 o

Processors

Active tasks

26
4,127 PTMap jobs with Swift/Falkon on BG/P in 3 minutes

Summary

Clean separation of logical/physical concerns
— Mapper-based specification of logical data structures

+ Concise specification of parallel programs
— Simple scripting language with iteration, etc.
+ Efficient execution

— On distributed and petascale resources

— Karajan+Falkon/Coasters: Grid interface, lightweight dispatch,
pipelining, clustering, provisioning

+ Rigorous provenance tracking and query
— Records provenance data of each job executed

- Improved usability and productivity

— Demonstrated in numerous applications

http://www.ci.uchicago.edu/swift

To learn more...

« www.ci.uchicago.edu/swift

— Quick Start Guide:
 http://www.ci.uchicago.edu/swift/guides/quickstartguide.php

— User Guide:
 http://www.ci.uchicago.edu/swift/guides/userguide.php

— Introductory Swift Tutorials:
* http://www.ci.uchicago.edu/swift/docs/index.php

http://www.ci.uchicago.edu/swift

Acknowledgments

Swift effort is supported in part by NSF grants OCI-721939, OCI-0944332,
and PHY-636265, NIH DC08638, and the UChicago/Argonne Computation
Institute

The Swift team:

— Ben Clifford, Allan Espinosa, lan Foster, Mihael Hategan, loan Raicu, Sarah
Kenny, Mike Wilde, Justin Wozniak, Zhao Zhang, Yong Zhao

Java CoG Kit used by Swift developed by:

— Mihael Hategan, Gregor Von Laszewski, and many collaborators
Falkon software

— developed by loan Raicu and Zhao Zhang
ZeptoOS

— Kamil Iskra, Kazutomo Yoshii, and Pete Beckman

Scientific application collaborators and users

— U. Chicago Open Protein Simulator Group (Karl Freed, Tobin Sosnick, Glen
Hocky, Joe Debartolo, Aashish Adhikari)

— U.Chicago Radiology and Human Neuroscience Lab, (Dr. S. Small)
— SEE/CIM-EARTH: Joshua Elliott, Meredith Franklin, Todd Muson
— PTMap: Yingming Zhao, Yue Chen

