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Overview

 Parallel scripting as a model for large-scale
computing

« An architecture for petascale parallel scripting
— Swift
— Collective data management
— Resource provisioning and fast task dispatch

— POSIX operating systems
* Application examples



Swift is...

* A language for writing scripts that:
— Process large collections of persistent data

— with large and/or complex sequences of
application programs

— on diverse distributed systems

— with a high degree of parallelism

— persisting over long periods of time

— surviving infrastructure failures

— and tracking the provenance of execution



A simple Swift script

type imagefile; // Declare a "file” type.

app (imagefile output) flip (imagefile input) {

{
convert "-rotate” 180 @input @output ;

J

imagefile stars <"orion.2008.0117.jpg">;
imagefile flipped <"output.jpg">;

flipped = flip(stars);



Parallelism via foreach { }

type imagefile; // Declare a “file” type.

(imagefile output) flip(imagefile input) {
app {
convert "-rotate” "180" @input @output;
}

) a B

Map inputs from local directory

imagefile observations[ ]|<simple _mapper; prefix="orion”>;

imagefile flipped] ] <simple_mapper; prefix="orion-flipped”>;
- Name outputs based on index )
/foreach obs,i in observations { ™

flipped][i] = flip(obs);

}
Process all dataset members in parallel

A )




Why script in Swift?

* Write scripts that are high-level, simpler, and
location-independent: run anywhere

— Higher level of abstraction makes a workflow script
more portable than “ad-hoc” scripting

« Coordinate execution on many resources over
long time periods

— This is very complex to do manually — Swift
automates it

« Enables restart of long running scripts
— Swift tracks jobs in a parallel script completed



Swift programs

A Swift script is a set of functions
— Atomic functions wrap & invoke application programs
— Composite functions invoke other functions

Data is typed as composable arrays and structures
of files and simple scalar types (int, float, string)

Collections of persistent file structures are mapped
Into this data model as arrays and structures

Members of datasets can be processed in parallel

Statements in a procedure are executed in data-flow
dependency order and concurrency

Variables are single assignment
Provenance is gathered as scripts execute



Application: 3° Protein structure prediction

type Fasta;

type SecSeq;
type RamaMap;
type Ramalndex;
type ProtGeo;
type SimLog;

type Protein {
Fasta fasta;
SecSeq secseq;
ProtGeo native;
RamaMap map;
Ramalndex index;

}

type PSimCf {
float st;
float tui;
float coeff;

}

type ProtSim {
ProtGeo pgeo;
SimLog log;

}

/I Primary protein sequence file in FASTA format
/I Secodary structure file
/l “Ramachandra” mapping info files

// PDB-format file — protein geometry: 3D atom coords

/I Input file struct to protein simulator
/[ sequence to predict structure of
/I Initial secondary structure to use
/[ 3D structure from experimental data when known

I/l Science configuration parameters to simulator

// Output file struct from protein simulator



Protein structure prediction

app (ProtGeo pgeo) predict (Protein pseq)

{
PSim @pseq.fasta @pgeo;

}

(ProtGeo pg[ ]) doRound (Protein p, int n) {
foreach sim in [0:n-1] {
pg[sim] = predict(p);
}
}

Protein p <ext; exec="Pmap", id="1af7">;
ProtGeo structure] |;

int nsim = 10000;

structure = doRound(p, nsim);



Protein structure prediction

(ProtSim psim[ ]) doRoundCf (Protein p, int n, PSimCf cf) {
foreach sim in [0:n-1] {
psim[sim] = predictCf(p, cf.st, cf.tui, cf.coeff );

}
}

(boolean converged) analyze( ProtSim prediction[ ], int r, int numRounds)
{
if( r == (numRounds-1) ) {
converged = true;
}
else {
converged = false;

}
}



Protein structure prediction

ItFix( Protein p, int nsim, int maxr, float temp, float dt)
{

ProtSim prediction[ ][ ];

boolean converged| |;

PSimCf config;

config.st = temp;
config.tui = dt;
config.coeff = 0.1;

iterate r {
prediction[r] =
doRoundCf(p, nsim, config);
converged]r] =
analyze(prediction[r], r, maxr);
} until ( converged|r] );

}



Protein structure prediction

Sweep( )
{
int nSim = 1000;
int maxRounds = 3;
Protein pSet[ ] <ext; exec="Protein.map">;
float startTemp[] =[ 100.0, 200.0 |;
float delT[]1=[1.0, 1.5, 2.0, 5.0, 10.0 ];
foreach p, pn in pSet {
foreach t in startTemp {
foreach d in delT {
ItFix(p, nSim, maxRounds, t, d);

} 10 proteins x 1000 simulations x
} 3 rounds x 2 temps x 5 deltas
} = 300K tasks
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Table 1. Example parallel scripting applications.

Description

Characteristics

Astronomy Creation of montages from many digital images Many 1-core tasks, much communication, complex Experimental
dependencies
Astronomy Stacking of cutouts from digital sky surveys Many 1-core tasks, much communication Experimental

Biochemistry*

Analysis of mass-spectrometer data for post-
translational protein modifications

10,000-100 million jobs for proteomic searches using
custom serial codes

In development

docking/screening

Biochemistry* Protein structure prediction using iterative fixing Hundreds to thousands of 1- to 1,000-core simulations | Operational
algorithm; exploring other biomolecular and data analysis
interactions

Biochemistry* Identification of drug targets via computational Up to 1 million 1-core docking operations Operational

Bioinformatics*

Metagenome modeling

Thousands of 1-core integer programming problems

In development

structural equation modeling, 100,000+ tasks

Business Mining of large text corpora to study media bias Analysis and comparison of over 70 million text files of | In development

economics news articles

Climate science | Ensemble climate model runs and analysis of Tens to hundreds of 100- to 1,000-core simulations Experimental
output data

Economics* Generation of response surfaces for various eco- | 1,000 to 1 million 1-core runs (10,000 typical), then Operational
nomic models data analysis

Neuroscience* Analysis of functional MRI datasets Comparison of images; connectivity analysis with Operational

surgical planning research

Radiology Training of computer-aided diagnosis algorithms Comparison of images; many tasks, much In development
communication
Radiology Image processing and brain mapping for neuro- Execution of MPI application in parallel In development

*Note: Asterisks indicate applications being run on Argonne National Laboratory’s Blue Gene/P (Intrepid)

and/or the TeraGrid Sun Constellation at the University of Texas at Austin (Ranger).
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CIM-EARTH: Modeling uncertainty
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Figure 4. CIM-EARTH energy-economics parameter sweeps of 5,000 models exploring uncertainty in consumer (top) and

industrial (bottom) electricity usage projections by region for the next five decades.




Swift parallel scripting architecure
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Environment for Grid scripting
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Swift runs on the grid client or “submit host”

* Sends jobs to one or more grid sites using GRAM and Condor-G
« Sends files to and from grid sites using GridFTP

« Directory to locate grid sites and services: (ReSS)

« Can also run on local hosts, or directly on a local cluster

« Can overlay a faster scheduling mechanism (Coasters, Falkon)



Architecture for petascale scripting

scripts | > | scripting language, task coordination,
throttling, data management, restart

M
[Collective data management:

Dataset Z>

=

broadcast of large common datasets,
scatter and gather of small files

M,

Command |5 Falkon:
lists ultra-fast task dispatch and load

balancing over processor sets

M
i:gltls ZeptoOS: v

Z> full Linux with fork/exec, dynamic Id and
torus/collective net access

applications
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Architecture for petascale scripting
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Collective data management is
critical for petascale

* Applies “scatter/gather” concepts at the file
management level

« Seeks to avoid contention, maximize
parallelism and use petascale interconnects
— Broadcast common files to compute nodes
— Place per-task data on local (RAM) FS
— Gather output into larger sets (time/space)
— Aggregate small local FS's into large striped FS

 Still in research — topic of new EAGER grant



Performance: Molecular dynamics on BG/P
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Performance: SEM for fMRI on Constellation
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Performance: Proteomics on BG/P
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Summary

Clean separation of logical/physical concerns
— Mapper-based specification of logical data structures

+ Concise specification of parallel programs
— Simple scripting language with iteration, etc.
+ Efficient execution

— On distributed and petascale resources

— Karajan+Falkon/Coasters: Grid interface, lightweight dispatch,
pipelining, clustering, provisioning

+ Rigorous provenance tracking and query
— Records provenance data of each job executed

- Improved usability and productivity

— Demonstrated in numerous applications

http://www.ci.uchicago.edu/swift



To learn more...

« www.ci.uchicago.edu/swift

— Quick Start Guide:
 http://www.ci.uchicago.edu/swift/guides/quickstartguide.php

— User Guide:
 http://www.ci.uchicago.edu/swift/guides/userguide.php

— Introductory Swift Tutorials:
* http://www.ci.uchicago.edu/swift/docs/index.php

http://www.ci.uchicago.edu/swift
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