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Overview 

•  Parallel scripting as a model for large-scale 
computing 

•  An architecture for petascale parallel scripting 
–  Swift 
–  Collective data management 
–  Resource provisioning and fast task dispatch 
–  POSIX operating systems 

•  Application examples 
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Swift is… 

•  A language for writing scripts that: 
–  Process large collections of persistent data 
–  with large and/or complex sequences of 

application programs 
–  on diverse distributed systems 
–  with a high degree of parallelism 
–  persisting over long periods of time 
–  surviving infrastructure failures  
–  and tracking the provenance of execution 
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A simple Swift script 

1  type imagefile;  // Declare a “file” type. 
2    
3  app (imagefile output) flip (imagefile input) { 
4  { 
5      convert  "-rotate"  180  @input  @output ; 
6  } 
7    
8  imagefile stars <"orion.2008.0117.jpg">; 
9  imagefile flipped <"output.jpg">; 
10    
11  flipped = flip(stars); 
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Parallelism via foreach { } 
1  type imagefile;  // Declare a “file” type. 
2    
3  (imagefile output) flip(imagefile input) { 
4    app { 
5      convert "-rotate" "180" @input @output; 
6    } 
7  } 
8    
9  imagefile observations[ ] <simple_mapper; prefix=“orion”>; 
10  imagefile flipped[ ]           <simple_mapper; prefix=“orion-flipped”>; 
11    
12    
13    
14  foreach obs,i in observations { 
15    flipped[i] = flip(obs);   
16  } 

Name outputs based on index 

Process all dataset members in parallel 
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Map inputs from local directory 



Why script in Swift? 

•  Write scripts that are high-level, simpler, and  
location-independent: run anywhere 
–  Higher level of abstraction makes a workflow script 

more portable than “ad-hoc” scripting 

•  Coordinate execution on many resources over 
long time periods 
–  This is very complex to do manually – Swift 

automates it 

•  Enables restart of long running scripts 
–  Swift tracks jobs in a parallel script completed 
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Swift programs 
•  A Swift script is a set of functions 

–  Atomic functions wrap & invoke application programs 
–  Composite functions invoke other functions 

•  Data is typed as composable arrays and structures 
of files and simple scalar types (int, float, string) 

•  Collections of persistent file structures are mapped 
into this data model as arrays and structures 

•  Members of datasets can be processed in parallel 
•  Statements in a procedure are executed in data-flow 

dependency order and concurrency 
•  Variables are single assignment 
•  Provenance is gathered as scripts execute 
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Application: 3o Protein structure prediction 
1.  type Fasta;              // Primary protein sequence file in FASTA format 
2.  type SecSeq;           // Secodary structure file 
3.  type RamaMap;       // “Ramachandra” mapping info files 
4.  type RamaIndex; 
5.  type ProtGeo;     // PDB-format file – protein geometry: 3D atom coords 
6.  type SimLog; 
7.    
8.  type Protein {   // Input file struct to protein simulator 
9.      Fasta fasta;    // sequence to predict structure of 
10.      SecSeq secseq;   // Initial secondary structure to use 
11.      ProtGeo native;   // 3D structure from experimental data when known      
12.      RamaMap map; 
13.      RamaIndex index; 
14.  } 
15.    
16.  type PSimCf {   // Science configuration parameters to simulator 
17.     float st; 
18.     float tui; 
19.     float coeff; 
20.  } 
21.    
22.  type ProtSim {   // Output file struct from protein simulator 
23.    ProtGeo pgeo; 
24.    SimLog log; 
25.  } 
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Protein structure prediction 

1.  app (ProtGeo pgeo) predict (Protein pseq) 
2.  { 
3.      PSim @pseq.fasta @pgeo; 
4.  } 
5.    
6.  (ProtGeo pg[ ]) doRound (Protein p, int n) { 
7.     foreach sim in [0:n-1] { 
8.        pg[sim] = predict(p); 
9.     } 
10.  } 
11.    
12.  Protein p <ext; exec="Pmap", id="1af7">; 
13.  ProtGeo structure[ ]; 
14.  int nsim = 10000; 
15.  structure = doRound(p, nsim); 
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Protein structure prediction 

1  (ProtSim psim[ ]) doRoundCf (Protein p, int n, PSimCf cf) { 
2     foreach sim in [0:n-1] { 
3        psim[sim] = predictCf(p, cf.st, cf.tui, cf.coeff ); 
4     } 
5  } 

6  (boolean converged) analyze( ProtSim prediction[ ], int r, int numRounds) 
7  { 
8    if( r == (numRounds-1) ) { 
9       converged = true; 
10    } 
11    else { 
12       converged = false; 
13    } 
14  } 
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Protein structure prediction 

1.  ItFix( Protein p, int nsim, int maxr, float temp, float dt) 
2.  { 
3.     ProtSim prediction[ ][ ]; 
4.     boolean converged[ ]; 
5.     PSimCf config; 
6.    
7.     config.st = temp; 
8.     config.tui = dt; 
9.     config.coeff = 0.1; 
10.    
11.     iterate r { 
12.        prediction[r] = 
13.           doRoundCf(p, nsim, config); 
14.        converged[r] = 
15.           analyze(prediction[r], r, maxr); 
16.      } until ( converged[r] ); 
17.  } 
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Protein structure prediction 
1.  Sweep( ) 
2.  { 
3.     int nSim = 1000; 
4.     int maxRounds = 3; 
5.     Protein pSet[ ] <ext; exec="Protein.map">; 
6.     float startTemp[ ] = [ 100.0, 200.0 ]; 
7.     float delT[ ] = [ 1.0, 1.5, 2.0, 5.0, 10.0 ]; 
8.     foreach p, pn in pSet { 
9.        foreach t in startTemp { 
10.           foreach d in delT { 
11.              ItFix(p, nSim, maxRounds, t, d); 
12.           } 
13.        } 
14.     } 
15.  } 
16.    
17.  Sweep(); 
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10 proteins x 1000 simulations x 
3 rounds x 2 temps x 5 deltas 

= 300K tasks  



Protein SEQ 
Len 

Class ST TUI Lowest 
RMSD (Å) 

DeBartolo 
RMSD (Å) 

Protein Len Class ST TUI Lowest 
RMSD 

(Å) 

1af7 69 α 15 25 3.77 2.5 1dcj 72 α/β 15 25 8.75 
50 3.60 50 9.11 
10
0 

3.77 10
0 

7.22 

25 25 3.20 25 25 8.34 
50 3.78 50 7.69 
10
0 

3.01 10
0 

8.94 

1r69 61 α 15 25 3.20 2.4 1ubq 73 α/β 15 25 6.68 
50 4.09 50 7.05 
10
0 

3.87 10
0 

6.00 

25 25 3.76 25 25 6.88 
50 2.94 50 8.29 
10
0 

3.87 10
0 

8.01 



T1af7 

Protein Lengt
h 

ST TUI Lowest RMSD 
(Å) 

DeBartolo RMSD (Å) 

T1af7 69 25 100 2.07 2.5 
T1b72 50 25 100 1.41 1.6 
T1r69 61 25 100 2.11 2.4 

T1r69 T1b72 
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*Note: Asterisks indicate applications being run on Argonne National Laboratory’s Blue Gene/P (Intrepid) 
          and/or the TeraGrid Sun Constellation at the University of Texas at Austin (Ranger). 



CIM-EARTH: Modeling uncertainty 
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Environment for Grid scripting 

Grid Protocols 

Grid Resources at UW 

Grid 
Storage 

Grid 
Middleware 

C
om

puting 
C

luster 

Grid Resources at ANL 
Grid 

Middleware 

C
om

puting 
C

luster 

Grid Resources at UCSD 

Grid 
Middleware 

C
om

puting 
C

luster 
Grid Client 

Application 
User 

Interface 

Swift & Grid 
Middleware 

Resource, 
Workflow 
And Data 
Catalogs 

Grid 
Storage 

Grid 
Storage 

Swift runs on the grid client or “submit host” 
•  Sends jobs to one or more grid sites using GRAM‏ and Condor-G 
•  Sends files to and from grid sites using GridFTP 
•  Directory to locate grid sites and services: (ReSS)‏ 
•  Can also run on local hosts, or directly on a local cluster 
•  Can overlay a faster scheduling mechanism (Coasters, Falkon) 
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Swift: 
scripting language, task coordination, 
throttling, data management, restart 

Falkon: 
ultra-fast task dispatch and load 
balancing over processor sets 

ZeptoOS: 
full Linux with fork/exec, dynamic ld and 
torus/collective net access 

Swift 
scripts 

Shell 
scripts 

Command 
lists 

applications 

Collective data management: 
broadcast of large common datasets, 
scatter and gather of small files 

Dataset
s 

Architecture for petascale scripting 



Small, fast, local 
memory-based filesystems 

Falkon client 
(load 

balancing) Shared 
global 

filesystem 

Swift script Falkon services 
on BG/P IO 
Processors BG/P Processor sets 

Architecture for petascale scripting 



Collective data management is 
critical for petascale 

•  Applies “scatter/gather” concepts at the file 
management level 

•  Seeks to avoid contention, maximize 
parallelism and use petascale interconnects 
–  Broadcast common files to compute nodes 
–  Place per-task data on local (RAM) FS 
–  Gather output into larger sets (time/space) 
–  Aggregate small local FS’s into large striped FS 

•  Still in research – topic of new EAGER grant 23 



Performance: Molecular dynamics on BG/P 
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935,803 DOCK jobs with Falkon on BG/P in 2 hours 



Performance: SEM for fMRI on Constellation  

25 
418K SEM tasks with Swift/Coasters on Ranger in 41 hours 



Performance: Proteomics on BG/P 

26 
4,127 PTMap jobs with Swift/Falkon on BG/P in 3 minutes 



Summary 
   Clean separation of logical/physical concerns 

–  Mapper-based specification of logical data structures 
+ Concise specification of parallel programs 

–  Simple scripting language with iteration, etc. 
+ Efficient execution 

–  On distributed and petascale resources 
–  Karajan+Falkon/Coasters: Grid interface, lightweight dispatch, 

pipelining, clustering, provisioning 
+ Rigorous provenance tracking and query 

–  Records provenance data of each job executed 
 Improved usability and productivity 

–  Demonstrated in numerous applications 

http://www.ci.uchicago.edu/swift  
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To learn more… 

•  www.ci.uchicago.edu/swift 
–  Quick Start Guide: 

•  http://www.ci.uchicago.edu/swift/guides/quickstartguide.php 

–  User Guide: 
•  http://www.ci.uchicago.edu/swift/guides/userguide.php 

–  Introductory Swift Tutorials: 
•  http://www.ci.uchicago.edu/swift/docs/index.php 

28 

http://www.ci.uchicago.edu/swift  



Acknowledgments 
•  Swift effort is supported in part by NSF grants OCI-721939, OCI-0944332, 

and PHY-636265, NIH DC08638, and the UChicago/Argonne Computation 
Institute 

•  The Swift team: 
–  Ben Clifford, Allan Espinosa, Ian Foster, Mihael Hategan, Ioan Raicu, Sarah 

Kenny, Mike Wilde, Justin Wozniak, Zhao Zhang, Yong Zhao 
•  Java CoG Kit used by Swift developed by: 

–  Mihael Hategan, Gregor Von Laszewski, and many collaborators 
•  Falkon software 

–  developed by Ioan Raicu and Zhao Zhang 
•  ZeptoOS 

–  Kamil Iskra, Kazutomo Yoshii, and Pete Beckman 
•  Scientific application collaborators and users 

–  U. Chicago Open Protein Simulator Group (Karl Freed, Tobin Sosnick, Glen 
Hocky, Joe Debartolo, Aashish Adhikari) 

–  U.Chicago Radiology and Human Neuroscience Lab, (Dr. S. Small) 
–  SEE/CIM-EARTH: Joshua Elliott, Meredith Franklin, Todd Muson 
–  PTMap: Yingming Zhao, Yue Chen 

29 


