Argonne°

NATIONAL LABORATORY

Parallel Adjoint Computation for State
Estimation in Global Climate Systems

Paul Hovland, Argonne National Laboratory

Joint work with Laurent Hascoet (INRIA), Patrick Heimbach (MIT), Chris Hill
(MIT), Barbara Kreaseck (La Sierra), Uwe Naumann (Aachen), Michelle Mills
Strout (Colorado State), Jean Utke (Argonne)

g\ U.S. DEPARTMENT OF
.4/ ENERGY

Laftude

Derivatives in Climate Science

ADJtheta z=1160 m T=-4.04 years min/max=-1.2e-06/4.01e-07
T T T T T

= Derivatives help climate scientists 9
understand what features control the ok P
Atlantic meridional overturning circulation ‘

latitude

= Derivatives provide insight into physical
features and parameters that need to be
measured accurately

= Derivatives are used in optimization-based

methods for obtaining global state
estimates (aka 4D-variational data assimilation)

es_penad_ addepth 00000 .bin.0000000095.2x2.levl min/max=0.00101 / 1

N]
Automatic Derivative Code Generation

Automatic differentiation tools automate creation of derivative code

Derivatives used in many numerical algorithms, including nonlinear equation
solvers, optimization algorithms, uncertainty quantification

Automatic generation of derivative code from function code offers several
benefits relative to hand-coded derivatives

— Higher productivity

— Improved quality: hand-coding is tedious and hence error-prone

— Higher performance: tools explore combinatorial search space

— Improved software maintenance: easier to maintain consistency
Automatic differentiation tools require:

— Robust compiler infrastructure (Open64/SL, ROSE)

— Traditional and domain-specific compiler analyses (OpenAnalysis)

— Combinatorial algorithms to identify effective strategies for combining partial
derivatives (XAlIFBooster)

Forward versus Reverse (or, What’s an Adjoint?)

=" Forward mode computes JS

— At a cost proportional to the number of columnsin S

— Ideal for Jv, or] when number of independent variables is small

— Follows control flow of function computation

— Cost is comparable to finite differences (can be much less, rarely much more)
= Reverse (adjoint) mode computes W)

— At a cost proportional to the number of rows in W

— ldeal for Jv, or) when number of dependent variables is small

— Reverses control flow of function computation: need to record control flow

decisions and values of overwritten variables: large storage requirements without
mitigation strategies

— Cost can be substantially less than finite differences

Automatic Differentiation and Parallelism

Data-flow analysis framework must become MPI-aware: requires identifying
potential send-receive pairs

Reverse mode dramatically reduces derivative cost for scalar functions but
requires control and data flow reversal relative to function evaluation

— In message-passing codes, send becomes receive and receive becomes send; situation
significantly more complicated in case of nonblocking communication

— Requirement to restore state in reverse order leads to full state and incremental
checkpointing strategies; restarts can be done in parallel

New prefix-like algorithms for derivatives of parallel reduction operations

Importance of Static Data Flow Analysis

resopenadz.addepthaooooo.bin.oooooooo95.2x2.lev1 min/max=0.00101 / 18.6

Latitude

sS0 100

150 200 250
Longitude

300

350

Runtime (mm:ss) | Ratio Memory (MB)
Simulation alone 2:20 1.0 —
Basic adjoint 143:37 61.6 6.87
2-level checkpoint 141:20 60.6 21.44
Improved storage 46:02 19.7 9.46
Activity analysis 21:51 9.4 3.17
Finite diffs (hypothetical) 23 days | 14,400. —

OpenAnalysis Suite of Analyses (all used in AD)

(Interprocedural) Control Flow Graph (CFG/ICFG)
Alias analysis

UseDef and DefUse chains

Side-effect analysis

Reaching constants

Domain-specific dataflow analyses
— Activity analysis (context (in)sensitive, flow (in)sensitive)
— Linearity analysis

Activity Analysis

... IS a static, nonseparable data-flow analysis that
determines which variables are active in the

computation of the dependents from the independents.
A variable is

e Vary if it depends upon an independent
« Useful if it is needed to determine a dependent
» Active if it is Vary and Useful at the same

Analysis of MPIl programs

Simplest, conservatively correct scheme: make all communicated variables
(sent, received, collective) active

: model send/receive as
al_ether =svar
rvar=g

MPI_Send(svar)

Wrong! Ignores SPMD semantics
if (MPI_Rank() = 0) then
MPI_Recv(val)

else
MPI_Send(func())
endif

Instead, add MPI semantics to analysis: MPICFG (Shires et al.) with modified
dataflow rules for communication edges (Strout)

MPIl-aware dataflow analysis

MPI-CFG
[Shires et al 98]

= Communication edges
between sends and

v receives
if (myid == 0)

N Qoo
o n
]

/ \ " Number of heuristics
used to reduce number

MPI=Send(&y,,,1,42,) - - == MPI=Recv(&c[1],,,0,42,,)
l i of send and receive
MPI_ Send(&b,,,1,77,) [-=--- | MPI Recv(&a,,,0,77,,) palrs

\ / = Models communication

MPI Reduce(&c,&f,, ,MPI_SUM,)

v and has potential to
- ; . model SPMD

Exit

6 10

MPI Data-Flow Analysis Framework

OUT(p2) oUTY(p/n)

OUT(p1)

commOUT(q1)

m.

\
\
\
\
\
\

commdl_JT(qm)
\

= Communication values

" Meet operation for the communication values
= Communication transfer function

= Special transfer function for sends and receives

11

Activity Analysis on MPI-CFG

Independent: y

| Entry

Qo
I n

-

if (myid == master) if (myid == master)
/
[MPI_send(sy, ...) f---------) | |MPI_send . co) b MPI_Recv@..
e EEREX f@ﬂ
MPI_Reduc&f, «.., MPI _SUM, ...) MPI—Red&f' ""@' o)
sz Dependent: f Exit

Correctness: Find when c is active

Precision: Determine when
C 1S not active

12

Experimental Methodology

" Benchmarks: Biostat, SOR, sweep3d, CG, LU, and MG

— Selected reasonable independent and dependent variable
combinations

— Created two versions of each combination:
= With a global communication variable
= Without a global communication variable

*= Ran ICFGCSActive on Benchmarks with global comm var
= Ran MPI-ICFGCSActive on Benchmarks without global

» Disclaimer: Precision improvements occur in benchmarks,
more work needed on larger applications

13

Benchmark Specifics

Benchmark Proc K-Context IND DEP # Indep
Biostat Iglik3 1 xmle xlogl 1089
SOR mainsor 1 omega resid 1
CG conj-grad 1 X 4 1
LU-1 rhs 2 frct rsd 40
LU-2 ssor 3 omega rsd

LU-3 rhs 2 tx1, tx2 rsd 2
MG-1 mg3P 4 r u

MG-2 psinv 2 C u 4
Sw-1 sweep 3 W flux 48
Sw-3 sweep 3 w leakage 48
Sw-4 sweep 3 weta leakage 48
Sw-5 sweep 3 w flux, leakage 48
Sw-6 sweep 3 weta flux, Ieaka§e 48

il _:_____ I _:_:__ 1 _::___ |

Biostat

11 1 ________ | ________ | ________ |

Benefit for Activity Analysis

- - -
0 0 r—{
o —

pPoAeS SANAQRIIN

15

Structure of Adjoint Computations

Algorithm P Algorithm P

input a,b,c output a,b,c

t = f(a,b) t =0

u = g(a,c) a += t * df/da
b += t * df/db
u =20

r = h(u,v) a += u * dg/da

v output r c += u * dg/dc

r = 0
u += r * dh/du
v += r * dh/dv
input r

Differentiating MPl communication

= Send-receive pair is equivalent to an assignment:

send(a) recv(b)

¥

b=a

= Adjoint computation reverses the data flow

\ 4

recv(tl) send(b)
a+=t1

a+=b

Adjoint Computation with MPI Communication

Algorithm P 1 Algorithm P
input a,b,c output a,b,c
Issues
u = g(a,c) u=20
isend (u) a += u * dg/da *What is the adjoint of waitall?
irecv (v) c +=u * dg/dc
irecv (u) *Where to put the waitall for
isend(v) irecv(u) and isend(v)?
waitall
r = h(u,v) .
J output r waitall
r = 0
u += r * dh/du
v += r * dh/dv
input r

One Solution: Introduce an AntiWait (PDPTAQ9)

Algorithm P

input a,b,c

u = g(a,c)
antiwaitall
isend (u)
irecv (v)

waltall
r = h(u,v)
output r

Algorithm P

u = 0
a += u * dg/da
c += u * dg/dc
waitall
1recv (u)
1send (v)
antiwaitall

= 0

r

u += r * dh/du
v += r * dh/dv
input r

AntiWait is functionally
a no-op, but provides
placement guidance.
Adjoint of waitall
becomes antiwaitall.

Motivation for Reduction Derivatives

= Parallel applications use reduction operations such as sum,
product, max, and min

= Differentiating sum is trivial

» Differentiating max/min is complicated when the max/min
value is on more than 1 proc. (pt of nondifferentiability)

= Differentiating product can be accomplished via pair of parallel
prefix operations:

nprocs
d
P Hx S]_k[%xk = I)k—lSk+1

= Requires 4log,P communication phases.
= New algorithm requires 2log,P communication phases.

Mapping a Binary Tree to a Binomial Tree

A A
G o @j}
oo o6 oG
0010001660 0

Parallel Prefix on a Binary (Binomial) Tree

Non-leaves:

eCombine values from left

and right children and pass
to parent

ePass value from left child

Xo Xy
/C)\ to right child
X X1 Xy X3 Xg 1>°£4x5 a2 %3 ePass value from parent to
/ \ \ left and right children
/1 O !v Xq x}a/ 1x2x371 %1"&"% %XZXS‘ Leaves:
C>/ \C> d O Cs/ O C>/ \C> ePass initial value to parent
eCombine value from

X s X X XX .
Xo X% XoXX% XoleXs Xg XX Xa¥kgXs XEMXeX7 parent with current value

Product Derivative on a Binary (Binomial) Tree

Non-leaves:
eCombine values from left
and right children and pass

‘ to parent
XoX1%z X3 X4 X5Xe X7 ePass value from left child
to right child
ePass value from right child

to left child

X4XW . ‘\%‘6&%@(7 Xo X1’°§§‘§Z/ . ‘\38‘93@‘2 X3 *Pass value from parent to
‘ ‘ ‘ ‘ left and right children
W ics 5X§(

' \ XX »é&xl x(ﬂ%(3 \W Xﬁ%’ #F"3 Leaves:
‘ O O ‘ O ‘ O *Pass initial value to parent
eSet current value to 1
Xpkis Xo¥ts XKz X, XsXdy XXBy Xk XXs oCombine value from

parent with current value

Importance of AD-based Derivatives

= One simulation run (20 yrs at 42): 52 hrs
= Gradient using AD: 204 hrs (8.5 cpu-days) l
= Finite-difference gradient approximation: 1.1 million cpu-yrs ﬁ é'%gj

Goal: 0(10)-0(100) gradient evaluations at 1/2°

ADJtheta z=1160 m T=-4.04 years min/max=-1.2e-06/4.01e-07 ADJtheta z=1160 m T=-8.04 years min/max=-4.27e-07 / 1.22e-07

Research Opportunities in AD & Parallelism

= New techniques to exploit additional parallelism introduced by differentiation
process

— Data parallelism due to multiple independent/dependent variables
— Task parallelism due to associativity of chain rule

= Parallel I/O in full state and incremental checkpointing
— Current approaches often assume one file per processor (on local disk)

= Parallel restart with state sharing through shared memory (multicore)
= How to deal with large memory requirements of adjoints on small memory nodes

Argonne-developed AD Tools

= QOpenAD/F (Argonne/UChicago/Rice)
— Support for many Fortran 95 features

— Developed by a team with expertise in combinatorial algorithms, compilers,
software engineering, and numerical analysis

— Forward and reverse; source transformation
= ADIC (Argonne/UChicago)
— Support for all of C, some C++
— Source transformation; forward mode (reverse under development)
— New version (2.0) based on industrial strength compiler infrastructure (EDG/ROSE)
— Shares some infrastructure with OpenAD/F
= ADIFOR (Rice/Argonne)
— Mature and very robust tool
— Support for all of Fortran 77
— Forward and (adequate) reverse modes

The Automatic Differentiation Team at Argonne

= Current personnel
— Heather Cole-Mullen (co-op/STA)
— Paul Hovland (computer scientist)
— Andrew Lyons (programmer, joint w/ UChicago)
— Sri Hari Krishna Narayanan (postdoc)
— Boyana Norris (computer scientist)
— llya Safro (postdoc)
— Jaewook Shin (Argonne Scholar)
— Jean Utke (joint w/ UChicago)

= (Close collaborators
— MIT: Patrick Heimbach, Chris Hill
— Colorado State: Michelle Strout
— La Sierra: Barbara Kreaseck

= Alumni and summer visitors

Jason Abate, Christian Bischof, Sanjukta Bhowmick, Andreas Griewank, Peyvand Khademi,
Priyadarshini Malusare, Andrew Mauer-Oats, Uwe Naumann, Lucas Roh, Michelle Mills Strout,
Beata Winnicka, Barbara Kreaseck, Scott Easterday, Luis Ramos, Rachel Sisterson, lan Karlin, Duc
Nguyen, Eliseo Ramon

OpenAnalysis

" Problem: Insufficient analysis support in existing compiler
infrastructures due to non-transferability of analysis

implementations

" Approach: Decouples analysis algorithms from
intermediate representations (IRs) by developing analysis-
specific interfaces

" Analysis reuse across compiler infrastructures
— Enable researchers to leverage prior work
— Enable direct comparisons amongst analyses
— Increase the impact of program analysis research

DFAGen Versus Hand-Written

Manual Version DFAGen Version

“ Writes
OA DF
_ Analysis m

Framework

Passed to

\'4

Links To

Links To
C++ >
Generates
Source

Code /You write:

S « 7 line SPEC file
You v;/_rltE. DFAGen Writes:
402 lines * 433 lines of C++ code

The Problem
(Example: Statically determine what may depend on

y?)

Entry
v = SPMD: Single Program
2 - Multiple Data
c[0] = ... = MPI: Message Passing
(Y) + Interface
if ((myid == 0) = Need to model

communication and

MPI Recv @ .,0,42,,) SPMD semantics

MPI Send

MPI Send(&b,,,1,77,) MPI Recv(&a,,,0,77,,)

30

Modeling e

Communication with ° Copy from buffer to global on Send
. « Copy from global to buffer on Recv
Global Variables

* Data-flow analysis assumes
only one branch visited

Entry . .

e With SPMD different processes

2 a can visit each branch
c[Ql= ...
b l' * With just globals for each
_ _ send/recv, G1 is not
if (myid == 0)

/\ dependent on y in right-hand-

MPI Send(&y,,,1,42,)

side branch
MPI Recv(&c[l],,,
¢l = yO O SRR

\l, CLLi] = G1I ‘l’

MPI Send(&b,,,1,77,) MPI Recv(&a,,,0,77,)
G2 = Db

a = G2

MPI Reduce(&c,&f,, ,MPI SUM

r) ¢,
Z = a
Vv
Exit
a

31

IV\C)(’E?Iif\g; .

Communication with ° Copy from buffer to global on Send

) » Copy from global to buffer on Recv
Global Variables
[Entry | * Data-flow analysis assumes
only one branch visited
a = .
Lo * With SPMD different processes
T2 can visit each branch
IS "
e With just globals for each
, v send/recv, G1 is not
|1f(my1d==0) | . .
dependent on y in right-hand-
MPI Send(&y,,,1,42,) MPI Recv(&c[1l]1,,,0,42,) SIde branCh))
I =vyQO O cl1l]l =GL O () * Make all communication
l, globals depend on y at the top
MPI Send(&b,,,1,77,) MPI_Recv(&a,,,0,77,)
G2 = b a = a20 O
» Conservative results
[MPI_Reduce (GY(&D), , ,MPI_SUM, | Marking a and z as
: may-depend on y is not
zZ a
@ wrong, just less precise

o | Exit |

Data-Flow Analysis Frameworks

= Asetof flow values (€.g. the set of variables that depend on
the variable y)

= A binary meet operation for application at control-flow merges (e.g. set
union)

= A transfer function that given the IN set for a node in the flow graph generates
the OUT set (e.g. if a variable in the IN set is used, then the
variables being defined should be put in the OUT set)

33

Applicable to Nonseparable Analyses

= Separable

— those commonly referred to as bitvector analyses (e.g. liveness, reaching definitions,
etc.)

= Nonseparable
— reaching constants: find vars that eval to constants
- slicing: all stmts that a particular stmt depends on
— trust analysis: does data item come from trusted source

— bitwidth analysis: N OW many bits needed to store expr

— activity analysis

34

Implementation Platform

" OpenAnalysis connected to the Open64 compiler
infrastructure

— http://developer.berlios.de/projects/openanalysis

— http://developer.berlios.de/projects/useoa-open64
= Uses the Whirl20A sub-repository

— ICFG

= MPICFG sub-repository under the openanalysis project
— Uses an augmented copy of the Whirl20A sub-repository

— MPI_ICFG (the ICFG with communication edges)

35

